Organometallic Magnets pp 163-189 | Cite as
Tetrathiafulvalene-Based Magnets of Lanthanides
Abstract
Tetrathiafulvalene (TTF)-based ligands and lanthanide ions have been intensively used for their electronic conductivity and optical properties, respectively. Their combination leads to a new class of coordination compounds that are able to display single-molecule magnet (SMM) behavior. Magnetic bistability resulting of such behavior could find potential applications in high-density data storage and quantum computing. In this chapter, a library of TTF-based magnets containing lanthanide ions is presented. Among this series, the influence of the coordination sphere and intra- and intermolecular interactions such as exchange, dipolar, supramolecular, and hyperfine interactions is probed through molecular engineering, magnetic dilutions, and isotopic enrichment.
Keywords
Ab initio calculations Coordination sphere Hyperfine interaction Lanthanide Single-molecule magnets TetrathiafulvaleneReferences
- 1.Sessoli R, Gatteschi D, Caneschi A, Novak MA (1993) Magnetic bistability in a metal-ion cluster. Nature 365:141–143Google Scholar
- 2.Ishikawa N, Sugita M, Ishikawa T, Koshihara S, Kaizu Y (2003) Lanthanide double-decker complexes functioning as magnets at the single-molecular level. J Am Chem Soc 125:8694–8695Google Scholar
- 3.Guo F-S, Day BM, Chen Y-C, Tong M-L, Mansikkamäki A, Layfield RA (2017) A dysprosium metallocene single-molecule magnet functioning at the axial limit. Angew Chem Int Ed 56:11445–11449Google Scholar
- 4.Goodwin CAP, Ortu F, Reta D, Chilton NF, Mills DP (2017) Molecular magnetic hysteresis at 60 kelvin in dysprosocenium. Nature 548:439–442PubMedPubMedCentralGoogle Scholar
- 5.Kobayashi H, Kobayashi A, Cassoux P (2000) BETS as a source of molecular magnetic superconductors (BETS = bis(ethylenedithio)tetraselenafulvalene). Chem Soc Rev 29:325–333Google Scholar
- 6.Coronado E, Galán-Mascarós JR, Gómez-García CJ, Laukhin V (2000) Coexistence of ferromagnetism and metallic conductivity in a molecule-based layered compound. Nature 408:447–449PubMedGoogle Scholar
- 7.Yamada J, Sugimoto T (2004) TTF chemistry: fundamentals and applications of tetrathiafulvalene. Kodansha, Tokyo, Springer, BerlinGoogle Scholar
- 8.Bendikov M, Wudl F, Perepichka DF (2004) Tetrathiafulvalenes, oligoacenenes, and their buckminsterfullerene derivatives: the brick and mortar of organic electronics. Chem Rev 104:4891–4946PubMedGoogle Scholar
- 9.Gorgues A, Hudhomme P, Sallé M (2004) Highly functionalized tetrathiafulvalenes: riding along the synthetic trail from electrophilic alkynes. Chem Rev 104:5151–5184PubMedGoogle Scholar
- 10.Lorcy D, Bellec N, Fourmigué M, Avarvari N (2009) Tetrathiafulvalene-based group XV ligands: Synthesis, coordination chemistry and radical cation salts. Coord Chem Rev 253:1398–1438Google Scholar
- 11.Pointillart F, Golhen S, Cador O, Ouahab L (2013) Paramagnetic 3d coordination complexes involving redox-active tetrathiafulvalene derivatives: an efficient approach to elaborate multi-properties materials. Dalton Trans 42:1949–1960PubMedGoogle Scholar
- 12.Gavrilenko KS, Gal YL, Cador O, Golhen S, Ouahab L (2007) First trinuclear paramagnetic transition metal complexes with redox active ligands derived from TTF: Co2M(PhCOO)6(TTF-CHCH-py)2·2CH3CN, M = CoII, MnII. Chem Commun 280–282Google Scholar
- 13.Benbellat N, Gavrilenko KS, Le Gal Y, Cador O, Golhen S, Gouasmia A, Fabre J-M, Ouahab L (2006) Co(II)−Co(II) paddlewheel complex with a redox-active ligand derived from TTF. Inorg Chem 45:10440–10442PubMedGoogle Scholar
- 14.Kolotilov SV, Cador O, Pointillart F, Golhen S, Le Gal Y, Gavrilenko KS, Ouahab L (2010) A new approach towards ferromagnetic conducting materials based on TTF-containing polynuclear complexes. J Mater Chem 20:9505–9514Google Scholar
- 15.Liu S-X, Ambrus C, Dolder S, Neels A, Decurtins S (2006) A dinuclear Ni(II) complex with two types of intramolecular magnetic couplings: Ni(II)−Ni(II) and Ni(II)−TTF•+. Inorg Chem 45:9622–9624PubMedGoogle Scholar
- 16.Cui L, Geng Y-F, Leong CF, Ma Q, D’Alessandro DM, Deng K, Zeng Q-D, Zuo J-L (2016) Synthesis, properties and surface self-assembly of a pentanuclear cluster based on the new π-conjugated TTF-triazole ligand. Sci Rep 6:srep25544Google Scholar
- 17.Mitsumoto K, Nishikawa H, Newton GN, Oshio H (2012) Encapsulation controlled single molecule magnetism in tetrathiafulvalene-capped cyanide-bridged cubes. Dalton Trans 41:13601–13608PubMedGoogle Scholar
- 18.Faulkner S, Burton-Pye BP, Khan T, Martin LR, Wray SD, Skabara PJ (2002) Interaction between tetrathiafulvalene carboxylic acid and ytterbium DO3A: solution state self-assembly of a ternary complex which is luminescent in the near IR. Chem Commun 1668–1669Google Scholar
- 19.Cui H, Otsuka T, Kobayashi A, Takeda N, Ishikawa M, Misaki Y, Kobayashi H (2003) Structural, electrical, and magnetic properties of a series of molecular conductors based on BDT-TTP and lanthanoid nitrate complex anions (BDT-TTP = 2,5-bis(1,3-dithiol-2-ylidene)-1,3,4,6-tetrathiapentalene). Inorg Chem 42:6114–6122PubMedGoogle Scholar
- 20.Pointillart F, Le Gal Y, Golhen S, Cador O, Ouahab L (2009) 4f Gadolinium(III) complex involving tetrathiafulvalene-amido-2-pyrimidine-1-oxide as a ligand. Inorg Chem 48:4631–4633PubMedGoogle Scholar
- 21.Gao F, Cui L, Liu W, Hu L, Zhong Y-W, Li Y-Z, Zuo J-L (2013) Seven-coordinate lanthanide sandwich-type complexes with a tetrathiafulvalene-fused Schiff base ligand. Inorg Chem 52:11164–11172PubMedGoogle Scholar
- 22.Gao F, Zhang X-M, Cui L, Deng K, Zeng Q-D, Zuo J-L (2014) Tetrathiafulvalene-supported triple-decker phthalocyaninato dysprosium(III) complex: synthesis, properties and surface assembly. Sci Rep 4:srep05928Google Scholar
- 23.Ran Y-F, Steinmann M, Sigrist M, Liu S-X, Hauser J, Decurtins S (2012) Tetrathiafulvalene-based lanthanide coordination complexes: synthesis, crystal structure, optical and electrochemical characterization. Comptes Rendus Chim 15:838–844Google Scholar
- 24.Ueki S, Nogami T, Ishida T, Tamura M (2006) ET and TTF salts with lanthanide complex ions showing frequency-dependent ac magnetic susceptibility. Mol Cryst Liq Cryst 455:129–134Google Scholar
- 25.Pointillart F, le Guennic B, Cador O, Maury O, Ouahab L (2015) Lanthanide ion and tetrathiafulvalene-based ligand as a “magic” couple toward luminescence, single molecule magnets, and magnetostructural correlations. Acc Chem Res 48:2834–2842PubMedGoogle Scholar
- 26.D’Aleo A, Pointillart F, Ouahab L, Andraud C, Maury O (2012) Charge transfer excited states sensitization of lanthanide emitting from the visible to the near-infra-red. Coord Chem Rev 256:1604–1620Google Scholar
- 27.Pointillart F, Guennic BL, Golhen S, Cador O, Ouahab L (2013) Slow magnetic relaxation in radical cation tetrathiafulvalene-based lanthanide(III) dinuclear complexes. Chem Commun 49:11632–11634Google Scholar
- 28.Uzelmeier CE, Smucker BW, Reinheimer EW, Shatruk M, O’Neal AW, Fourmigué M, Dunbar KR (2006) A series of complexes of the phosphorus-based TTF ligand o-P2 with the metal ions FeII, CoII, NiII, PdII, PtII, and AgI. Dalton Trans 5259–5268 Google Scholar
- 29.Xiong J, Li G-N, Sun L, Li Y-Z, Zuo J-L, You X-Z (2011) Mono- and dinuclear Co/Ni complexes bearing redox-active tetrathiafulvaleneacetylacetonate ligands – syntheses, crystal structures, and properties. Eur J Inorg Chem 5173–5181Google Scholar
- 30.Guo YN, Xu GF, Gamez P, Zhao L, Lin SY, Deng R, Tang J, Zhang HJ (2010) Two-step relaxation in a linear tetranuclear dysprosium (III) aggregate showing single-molecule magnet behavior. J Am Chem Soc 132:8538–8539PubMedGoogle Scholar
- 31.Guo YN, Xu GF, Wernsdorfer W, Ungur L, Guo Y, Tang J, Zhang HJ, Chibotaru LF, Powell AK (2011) Strong axiality and Ising exchange interaction suppress zero-field tunneling of magnetization of an asymmetric Dy2 single-molecule magnet. J Am Chem Soc 133:11948–11951Google Scholar
- 32.Lin S-Y, Wernsdorfer W, Ungur L, Powell AK, Guo Y-N, Tang J, Zhao L, Chibotaru LF, Zhang H-J (2012) Coupling Dy3 triangles to maximize the toroidal moment. Angew Chem Int Ed 51:12767–12771Google Scholar
- 33.Guo Y-N, Ungur L, Granroth GE, Powell AK, Wu C, Nagler SE, Tang J, Chibotaru LF, Cui D (2014) An NCN-pincer ligand dysprosium single-ion magnet showing magnetic relaxation via the second excited state. Sci Rep 4:5471PubMedPubMedCentralGoogle Scholar
- 34.Layfield RA (2014) Organometallic single-molecule magnets. Organometallics 33:1084–1099Google Scholar
- 35.Guo Y-N, Xu G-F, Guo Y, Tang J (2011) Relaxation dynamics of dysprosium(III) single molecule magnets. Dalton Trans 40:9953–9963Google Scholar
- 36.Zhang P, Zhang L, Tang J (2015) Lanthanide single molecule magnets: progress and perspective. Dalton Trans 44:3923–3929Google Scholar
- 37.Ungur L, Lin S-Y, Tang J, Chibotaru LF (2014) Single-molecule toroics in Ising-type lanthanide molecular clusters. Chem Soc Rev 43:6894–6905Google Scholar
- 38.Pointillart F, Cador O, Le Guennic B, Ouahab L (2017) Uncommon lanthanide ions in purely 4f single molecule magnets. Coord Chem Rev 346:150–175Google Scholar
- 39.Pointillart F, Le Gal Y, Golhen S, Cador O, Ouahab L (2011) Single-molecule magnet behaviour in a tetrathiafulvalene-based electroactive antiferromagnetically coupled dinuclear dysprosium(III) complex. Chem Eur J 17:10397–10404PubMedGoogle Scholar
- 40.Llunell M, casanova D, Cicera J, Bofill JM, Alemany P, Alvarez S (2013) SHAPE (version 2.1)Google Scholar
- 41.Rinehart JD, Long JR (2011) Exploiting single-ion anisotropy in the design of f-element single-molecule magnets. Chem Sci 2:2078–2085Google Scholar
- 42.Sievers J (1982) Asphericity of 4f-shells in their Hund’s rule ground states. Z Für Phys B Condens Matter 45:289–296Google Scholar
- 43.Ungur L, Chibotaru LF (2011) Magnetic anisotropy in the excited states of low symmetry lanthanide complexes. Phys Chem Chem Phys 13:20086–20090PubMedPubMedCentralGoogle Scholar
- 44.Ungur L, Chibotaru LF (2016) Strategies toward high-temperature lanthanide-based single-molecule magnets. Inorg Chem 55:10043–10056Google Scholar
- 45.Cosquer G, Pointillart F, Golhen S, Cador O, Ouahab L (2013) Slow magnetic relaxation in condensed versus dispersed dysprosium(III) mononuclear complexes. Chem Eur J 19:7895–7903PubMedGoogle Scholar
- 46.Jung J, Cador O, Bernot K, Pointillart F, Luzon J, Le Guennic B (2014) Influence of the supramolecular architecture on the magnetic properties of a DyIII single-molecule magnet: an ab initio investigation. Beilstein J Nanotechnol 5:2267–2274PubMedPubMedCentralGoogle Scholar
- 47.da Cunha TT, Jung J, Boulon M-E et al (2013) Magnetic poles determinations and robustness of memory effect upon solubilization in a DyIII-based single ion magnet. J Am Chem Soc 135:16332–16335PubMedPubMedCentralGoogle Scholar
- 48.Orbach R (1961) Spin-lattice relaxation in rare-earth salts. Proc R Soc Lond A 264:458–484Google Scholar
- 49.Pointillart F, Bernot K, Golhen S, Le Guennic B, Guizouarn T, Ouahab L, Cador O (2015) Magnetic memory in an isotopically enriched and magnetically isolated mononuclear dysprosium complex. Angew Chem Int Ed 54:1504–1507Google Scholar
- 50.Gatteschi D, Sessoli R (2003) Quantum tunneling of magnetization and related phenomena in molecular materials. Angew Chem Int Ed 42:268–297Google Scholar
- 51.Ishikawa N, Sugita M, Wernsdorfer W (2005) Nuclear spin driven quantum tunneling of magnetization in a new lanthanide single-molecule magnet: bis(phthalocyaninato)holmium anion. J Am Chem Soc 127:3650–3651PubMedGoogle Scholar
- 52.Ishikawa N, Sugita M, Wernsdorfer W (2005) Quantum tunneling of magnetization in lanthanide single-molecule magnets: bis(phthalocyaninato)terbium and bis(phthalocyaninato)dysprosium anions. Angew Chem Int Ed 44:2931–2935Google Scholar
- 53.Flores Gonzales J, Pointillart F, Ouahab L, Cador O. Hyperfine coupling and slow magnetic relaxation in isotopically enriched Dy(III) mononuclear single-molecule magnets. Submitted Google Scholar
- 54.Ebenhöh W, Ehlers VJ, Ferch J (1967) Hyperfine-structure measurements on Dy161 and Dy163. Z Für Phys 200:84–92Google Scholar
- 55.Childs WJ (1970) Hyperfine structure of 5I8,7 atomic states of Dy161,163 and the ground-state nuclear moments. Phys Rev A 2:1692–1701Google Scholar
- 56.Kishi Y, Pointillart F, Lefeuvre B, Riobé F, Guennic BL, Golhen S, Cador O, Maury O, Fujiwara H, Ouahab L (2017) Isotopically enriched polymorphs of dysprosium single molecule magnets. Chem Commun 53:3575–3578Google Scholar
- 57.Fujiwara H, Yokota S, Hayashi S, Takemoto S, Matsuzaka H (2010) Development of photofunctional materials using TTF derivatives containing a 1,3-benzothiazole ring. Phys B Condens Matter 405:S15–S18Google Scholar
- 58.Speed S, Feng M, Garcia GF et al (2017) Lanthanide complexes involving multichelating TTF-based ligands. Inorg Chem Front 4:604–617Google Scholar
- 59.Cole KS, Cole RH (1941) Dispersion and absorption in dielectrics I. Alternating current characteristics. J Chem Phys 9:341–351Google Scholar
- 60.Abragam A, Bleaney B (2012) Electron paramagnetic resonance of transition ions.Reprint edn. Oxford University Press, OxfordGoogle Scholar
- 61.Feng M, Pointillart F, Lefeuvre B, Dorcet V, Golhen S, Cador O, Ouahab L (2015) Multiple single-molecule magnet behaviors in dysprosium dinuclear complexes involving a multiple functionalized tetrathiafulvalene-based ligand. Inorg Chem 54:4021–4028PubMedGoogle Scholar
- 62.Jia C, Liu S-X, Tanner C, Leiggener C, Neels A, Sanguinet L, Levillain E, Leutwyler S, Hauser A, Decurtins S (2007) An experimental and computational study on intramolecular charge transfer: a tetrathiafulvalene-fused dipyridophenazine molecule. Chem Eur J 13:3804–3812PubMedGoogle Scholar
- 63.Pointillart F, Jung J, Berraud-Pache R et al (2015) Luminescence and single-molecule magnet behavior in lanthanide complexes involving a tetrathiafulvalene-fused dipyridophenazine ligand. Inorg Chem 54:5384–5397Google Scholar
- 64.Kuropatov V, Klementieva S, Fukin G, Mitin A, Ketkov S, Budnikova Y, Cherkasov V, Abakumov G (2010) Novel method for the synthesis of functionalized tetrathiafulvalenes, an acceptor–donor–acceptor molecule comprising of two o-quinone moieties linked by a TTF bridge. Tetrahedron 66:7605–7611Google Scholar
- 65.Pointillart F, Klementieva S, Kuropatov V, Gal YL, Golhen S, Cador O, Cherkasov V, Ouahab L (2012) A single molecule magnet behaviour in a D3h symmetry Dy(III) complex involving a quinone–tetrathiafulvalene–quinone bridge. Chem Commun 48:714–716Google Scholar
- 66.Soussi K, Jung J, Pointillart F, Guennic BL, Lefeuvre B, Golhen S, Cador O, Guyot Y, Maury O, Ouahab L (2015) Magnetic and photo-physical investigations into Dy(III) and Yb(III) complexes involving tetrathiafulvalene ligand. Inorg Chem Front 2:1105–1117Google Scholar
- 67.Huang G, Fernandez-Garcia G, Badiane I et al. Magnetic slow relaxation in a metal organic framework made of chains of ferromagnetically coupled single-molecule magnets. Chem Eur J. doi: https://doi.org/10.1002/chem.201800095 Google Scholar
- 68.Zhang P, Jung J, Zhang L, Tang J, Le Guennic B (2016) Elucidating the magnetic anisotropy and relaxation dynamics of low-coordinate lanthanide compounds. Inorg Chem 55:1905–1911PubMedPubMedCentralGoogle Scholar
- 69.Pointillart F, Guennic BL, Golhen S, Cador O, Maury O, Ouahab L (2013) A redox-active luminescent ytterbium based single molecule magnet. Chem Commun 49:615–617Google Scholar
- 70.Pointillart F, Golhen S, Cador O, Ouahab L Slow magnetic relaxation in a redox-active tetrathiafulvalene-based ferromagnetic dysprosium complex. Eur J Inorg Chem 2014, 2014:4558–4563Google Scholar
- 71.Pointillart F, Le Guennic B, Maury O, Golhen S, Cador O, Ouahab L (2013) Lanthanide dinuclear complexes involving tetrathiafulvalene-3-pyridine-N-oxide ligand: semiconductor radical salt, magnetic, and photophysical studies. Inorg Chem 52:1398–1408PubMedGoogle Scholar
- 72.Pointillart F, Guizouarn T, Lefeuvre B, Golhen S, Cador O, Ouahab L (2015) Rational design of a lanthanide-based complex featuring different single-molecule magnets. Chem Eur J 21:16929–16934PubMedGoogle Scholar
- 73.Belio Castro A, Jung J, Golhen S, Le Guennic B, Ouahab L, Cador O, Pointillart F (2016) Slow magnetic relaxation in unprecedented mono-dimensional coordination polymer of ytterbium involving tetrathiafulvalene-dicarboxylate linker. Magnetochemistry 2:26Google Scholar