Tetrathiafulvalene-Based Magnets of Lanthanides

  • Olivier CadorEmail author
  • Fabrice Pointillart
Part of the Topics in Organometallic Chemistry book series (TOPORGAN, volume 64)


Tetrathiafulvalene (TTF)-based ligands and lanthanide ions have been intensively used for their electronic conductivity and optical properties, respectively. Their combination leads to a new class of coordination compounds that are able to display single-molecule magnet (SMM) behavior. Magnetic bistability resulting of such behavior could find potential applications in high-density data storage and quantum computing. In this chapter, a library of TTF-based magnets containing lanthanide ions is presented. Among this series, the influence of the coordination sphere and intra- and intermolecular interactions such as exchange, dipolar, supramolecular, and hyperfine interactions is probed through molecular engineering, magnetic dilutions, and isotopic enrichment.


Ab initio calculations Coordination sphere Hyperfine interaction Lanthanide Single-molecule magnets Tetrathiafulvalene 


  1. 1.
    Sessoli R, Gatteschi D, Caneschi A, Novak MA (1993) Magnetic bistability in a metal-ion cluster. Nature 365:141–143Google Scholar
  2. 2.
    Ishikawa N, Sugita M, Ishikawa T, Koshihara S, Kaizu Y (2003) Lanthanide double-decker complexes functioning as magnets at the single-molecular level. J Am Chem Soc 125:8694–8695Google Scholar
  3. 3.
    Guo F-S, Day BM, Chen Y-C, Tong M-L, Mansikkamäki A, Layfield RA (2017) A dysprosium metallocene single-molecule magnet functioning at the axial limit. Angew Chem Int Ed 56:11445–11449Google Scholar
  4. 4.
    Goodwin CAP, Ortu F, Reta D, Chilton NF, Mills DP (2017) Molecular magnetic hysteresis at 60 kelvin in dysprosocenium. Nature 548:439–442PubMedPubMedCentralGoogle Scholar
  5. 5.
    Kobayashi H, Kobayashi A, Cassoux P (2000) BETS as a source of molecular magnetic superconductors (BETS = bis(ethylenedithio)tetraselenafulvalene). Chem Soc Rev 29:325–333Google Scholar
  6. 6.
    Coronado E, Galán-Mascarós JR, Gómez-García CJ, Laukhin V (2000) Coexistence of ferromagnetism and metallic conductivity in a molecule-based layered compound. Nature 408:447–449PubMedGoogle Scholar
  7. 7.
    Yamada J, Sugimoto T (2004) TTF chemistry: fundamentals and applications of tetrathiafulvalene. Kodansha, Tokyo, Springer, BerlinGoogle Scholar
  8. 8.
    Bendikov M, Wudl F, Perepichka DF (2004) Tetrathiafulvalenes, oligoacenenes, and their buckminsterfullerene derivatives: the brick and mortar of organic electronics. Chem Rev 104:4891–4946PubMedGoogle Scholar
  9. 9.
    Gorgues A, Hudhomme P, Sallé M (2004) Highly functionalized tetrathiafulvalenes: riding along the synthetic trail from electrophilic alkynes. Chem Rev 104:5151–5184PubMedGoogle Scholar
  10. 10.
    Lorcy D, Bellec N, Fourmigué M, Avarvari N (2009) Tetrathiafulvalene-based group XV ligands: Synthesis, coordination chemistry and radical cation salts. Coord Chem Rev 253:1398–1438Google Scholar
  11. 11.
    Pointillart F, Golhen S, Cador O, Ouahab L (2013) Paramagnetic 3d coordination complexes involving redox-active tetrathiafulvalene derivatives: an efficient approach to elaborate multi-properties materials. Dalton Trans 42:1949–1960PubMedGoogle Scholar
  12. 12.
    Gavrilenko KS, Gal YL, Cador O, Golhen S, Ouahab L (2007) First trinuclear paramagnetic transition metal complexes with redox active ligands derived from TTF: Co2M(PhCOO)6(TTF-CHCH-py)2·2CH3CN, M = CoII, MnII. Chem Commun 280–282Google Scholar
  13. 13.
    Benbellat N, Gavrilenko KS, Le Gal Y, Cador O, Golhen S, Gouasmia A, Fabre J-M, Ouahab L (2006) Co(II)−Co(II) paddlewheel complex with a redox-active ligand derived from TTF. Inorg Chem 45:10440–10442PubMedGoogle Scholar
  14. 14.
    Kolotilov SV, Cador O, Pointillart F, Golhen S, Le Gal Y, Gavrilenko KS, Ouahab L (2010) A new approach towards ferromagnetic conducting materials based on TTF-containing polynuclear complexes. J Mater Chem 20:9505–9514Google Scholar
  15. 15.
    Liu S-X, Ambrus C, Dolder S, Neels A, Decurtins S (2006) A dinuclear Ni(II) complex with two types of intramolecular magnetic couplings: Ni(II)−Ni(II) and Ni(II)−TTF•+. Inorg Chem 45:9622–9624PubMedGoogle Scholar
  16. 16.
    Cui L, Geng Y-F, Leong CF, Ma Q, D’Alessandro DM, Deng K, Zeng Q-D, Zuo J-L (2016) Synthesis, properties and surface self-assembly of a pentanuclear cluster based on the new π-conjugated TTF-triazole ligand. Sci Rep 6:srep25544Google Scholar
  17. 17.
    Mitsumoto K, Nishikawa H, Newton GN, Oshio H (2012) Encapsulation controlled single molecule magnetism in tetrathiafulvalene-capped cyanide-bridged cubes. Dalton Trans 41:13601–13608PubMedGoogle Scholar
  18. 18.
    Faulkner S, Burton-Pye BP, Khan T, Martin LR, Wray SD, Skabara PJ (2002) Interaction between tetrathiafulvalene carboxylic acid and ytterbium DO3A: solution state self-assembly of a ternary complex which is luminescent in the near IR. Chem Commun 1668–1669Google Scholar
  19. 19.
    Cui H, Otsuka T, Kobayashi A, Takeda N, Ishikawa M, Misaki Y, Kobayashi H (2003) Structural, electrical, and magnetic properties of a series of molecular conductors based on BDT-TTP and lanthanoid nitrate complex anions (BDT-TTP = 2,5-bis(1,3-dithiol-2-ylidene)-1,3,4,6-tetrathiapentalene). Inorg Chem 42:6114–6122PubMedGoogle Scholar
  20. 20.
    Pointillart F, Le Gal Y, Golhen S, Cador O, Ouahab L (2009) 4f Gadolinium(III) complex involving tetrathiafulvalene-amido-2-pyrimidine-1-oxide as a ligand. Inorg Chem 48:4631–4633PubMedGoogle Scholar
  21. 21.
    Gao F, Cui L, Liu W, Hu L, Zhong Y-W, Li Y-Z, Zuo J-L (2013) Seven-coordinate lanthanide sandwich-type complexes with a tetrathiafulvalene-fused Schiff base ligand. Inorg Chem 52:11164–11172PubMedGoogle Scholar
  22. 22.
    Gao F, Zhang X-M, Cui L, Deng K, Zeng Q-D, Zuo J-L (2014) Tetrathiafulvalene-supported triple-decker phthalocyaninato dysprosium(III) complex: synthesis, properties and surface assembly. Sci Rep 4:srep05928Google Scholar
  23. 23.
    Ran Y-F, Steinmann M, Sigrist M, Liu S-X, Hauser J, Decurtins S (2012) Tetrathiafulvalene-based lanthanide coordination complexes: synthesis, crystal structure, optical and electrochemical characterization. Comptes Rendus Chim 15:838–844Google Scholar
  24. 24.
    Ueki S, Nogami T, Ishida T, Tamura M (2006) ET and TTF salts with lanthanide complex ions showing frequency-dependent ac magnetic susceptibility. Mol Cryst Liq Cryst 455:129–134Google Scholar
  25. 25.
    Pointillart F, le Guennic B, Cador O, Maury O, Ouahab L (2015) Lanthanide ion and tetrathiafulvalene-based ligand as a “magic” couple toward luminescence, single molecule magnets, and magnetostructural correlations. Acc Chem Res 48:2834–2842PubMedGoogle Scholar
  26. 26.
    D’Aleo A, Pointillart F, Ouahab L, Andraud C, Maury O (2012) Charge transfer excited states sensitization of lanthanide emitting from the visible to the near-infra-red. Coord Chem Rev 256:1604–1620Google Scholar
  27. 27.
    Pointillart F, Guennic BL, Golhen S, Cador O, Ouahab L (2013) Slow magnetic relaxation in radical cation tetrathiafulvalene-based lanthanide(III) dinuclear complexes. Chem Commun 49:11632–11634Google Scholar
  28. 28.
    Uzelmeier CE, Smucker BW, Reinheimer EW, Shatruk M, O’Neal AW, Fourmigué M, Dunbar KR (2006) A series of complexes of the phosphorus-based TTF ligand o-P2 with the metal ions FeII, CoII, NiII, PdII, PtII, and AgI. Dalton Trans 5259–5268 Google Scholar
  29. 29.
    Xiong J, Li G-N, Sun L, Li Y-Z, Zuo J-L, You X-Z (2011) Mono- and dinuclear Co/Ni complexes bearing redox-active tetrathiafulvaleneacetylacetonate ligands – syntheses, crystal structures, and properties. Eur J Inorg Chem 5173–5181Google Scholar
  30. 30.
    Guo YN, Xu GF, Gamez P, Zhao L, Lin SY, Deng R, Tang J, Zhang HJ (2010) Two-step relaxation in a linear tetranuclear dysprosium (III) aggregate showing single-molecule magnet behavior. J Am Chem Soc 132:8538–8539PubMedGoogle Scholar
  31. 31.
    Guo YN, Xu GF, Wernsdorfer W, Ungur L, Guo Y, Tang J, Zhang HJ, Chibotaru LF, Powell AK (2011) Strong axiality and Ising exchange interaction suppress zero-field tunneling of magnetization of an asymmetric Dy2 single-molecule magnet. J Am Chem Soc 133:11948–11951Google Scholar
  32. 32.
    Lin S-Y, Wernsdorfer W, Ungur L, Powell AK, Guo Y-N, Tang J, Zhao L, Chibotaru LF, Zhang H-J (2012) Coupling Dy3 triangles to maximize the toroidal moment. Angew Chem Int Ed 51:12767–12771Google Scholar
  33. 33.
    Guo Y-N, Ungur L, Granroth GE, Powell AK, Wu C, Nagler SE, Tang J, Chibotaru LF, Cui D (2014) An NCN-pincer ligand dysprosium single-ion magnet showing magnetic relaxation via the second excited state. Sci Rep 4:5471PubMedPubMedCentralGoogle Scholar
  34. 34.
    Layfield RA (2014) Organometallic single-molecule magnets. Organometallics 33:1084–1099Google Scholar
  35. 35.
    Guo Y-N, Xu G-F, Guo Y, Tang J (2011) Relaxation dynamics of dysprosium(III) single molecule magnets. Dalton Trans 40:9953–9963Google Scholar
  36. 36.
    Zhang P, Zhang L, Tang J (2015) Lanthanide single molecule magnets: progress and perspective. Dalton Trans 44:3923–3929Google Scholar
  37. 37.
    Ungur L, Lin S-Y, Tang J, Chibotaru LF (2014) Single-molecule toroics in Ising-type lanthanide molecular clusters. Chem Soc Rev 43:6894–6905Google Scholar
  38. 38.
    Pointillart F, Cador O, Le Guennic B, Ouahab L (2017) Uncommon lanthanide ions in purely 4f single molecule magnets. Coord Chem Rev 346:150–175Google Scholar
  39. 39.
    Pointillart F, Le Gal Y, Golhen S, Cador O, Ouahab L (2011) Single-molecule magnet behaviour in a tetrathiafulvalene-based electroactive antiferromagnetically coupled dinuclear dysprosium(III) complex. Chem Eur J 17:10397–10404PubMedGoogle Scholar
  40. 40.
    Llunell M, casanova D, Cicera J, Bofill JM, Alemany P, Alvarez S (2013) SHAPE (version 2.1)Google Scholar
  41. 41.
    Rinehart JD, Long JR (2011) Exploiting single-ion anisotropy in the design of f-element single-molecule magnets. Chem Sci 2:2078–2085Google Scholar
  42. 42.
    Sievers J (1982) Asphericity of 4f-shells in their Hund’s rule ground states. Z Für Phys B Condens Matter 45:289–296Google Scholar
  43. 43.
    Ungur L, Chibotaru LF (2011) Magnetic anisotropy in the excited states of low symmetry lanthanide complexes. Phys Chem Chem Phys 13:20086–20090PubMedPubMedCentralGoogle Scholar
  44. 44.
    Ungur L, Chibotaru LF (2016) Strategies toward high-temperature lanthanide-based single-molecule magnets. Inorg Chem 55:10043–10056Google Scholar
  45. 45.
    Cosquer G, Pointillart F, Golhen S, Cador O, Ouahab L (2013) Slow magnetic relaxation in condensed versus dispersed dysprosium(III) mononuclear complexes. Chem Eur J 19:7895–7903PubMedGoogle Scholar
  46. 46.
    Jung J, Cador O, Bernot K, Pointillart F, Luzon J, Le Guennic B (2014) Influence of the supramolecular architecture on the magnetic properties of a DyIII single-molecule magnet: an ab initio investigation. Beilstein J Nanotechnol 5:2267–2274PubMedPubMedCentralGoogle Scholar
  47. 47.
    da Cunha TT, Jung J, Boulon M-E et al (2013) Magnetic poles determinations and robustness of memory effect upon solubilization in a DyIII-based single ion magnet. J Am Chem Soc 135:16332–16335PubMedPubMedCentralGoogle Scholar
  48. 48.
    Orbach R (1961) Spin-lattice relaxation in rare-earth salts. Proc R Soc Lond A 264:458–484Google Scholar
  49. 49.
    Pointillart F, Bernot K, Golhen S, Le Guennic B, Guizouarn T, Ouahab L, Cador O (2015) Magnetic memory in an isotopically enriched and magnetically isolated mononuclear dysprosium complex. Angew Chem Int Ed 54:1504–1507Google Scholar
  50. 50.
    Gatteschi D, Sessoli R (2003) Quantum tunneling of magnetization and related phenomena in molecular materials. Angew Chem Int Ed 42:268–297Google Scholar
  51. 51.
    Ishikawa N, Sugita M, Wernsdorfer W (2005) Nuclear spin driven quantum tunneling of magnetization in a new lanthanide single-molecule magnet: bis(phthalocyaninato)holmium anion. J Am Chem Soc 127:3650–3651PubMedGoogle Scholar
  52. 52.
    Ishikawa N, Sugita M, Wernsdorfer W (2005) Quantum tunneling of magnetization in lanthanide single-molecule magnets: bis(phthalocyaninato)terbium and bis(phthalocyaninato)dysprosium anions. Angew Chem Int Ed 44:2931–2935Google Scholar
  53. 53.
    Flores Gonzales J, Pointillart F, Ouahab L, Cador O. Hyperfine coupling and slow magnetic relaxation in isotopically enriched Dy(III) mononuclear single-molecule magnets. Submitted Google Scholar
  54. 54.
    Ebenhöh W, Ehlers VJ, Ferch J (1967) Hyperfine-structure measurements on Dy161 and Dy163. Z Für Phys 200:84–92Google Scholar
  55. 55.
    Childs WJ (1970) Hyperfine structure of 5I8,7 atomic states of Dy161,163 and the ground-state nuclear moments. Phys Rev A 2:1692–1701Google Scholar
  56. 56.
    Kishi Y, Pointillart F, Lefeuvre B, Riobé F, Guennic BL, Golhen S, Cador O, Maury O, Fujiwara H, Ouahab L (2017) Isotopically enriched polymorphs of dysprosium single molecule magnets. Chem Commun 53:3575–3578Google Scholar
  57. 57.
    Fujiwara H, Yokota S, Hayashi S, Takemoto S, Matsuzaka H (2010) Development of photofunctional materials using TTF derivatives containing a 1,3-benzothiazole ring. Phys B Condens Matter 405:S15–S18Google Scholar
  58. 58.
    Speed S, Feng M, Garcia GF et al (2017) Lanthanide complexes involving multichelating TTF-based ligands. Inorg Chem Front 4:604–617Google Scholar
  59. 59.
    Cole KS, Cole RH (1941) Dispersion and absorption in dielectrics I. Alternating current characteristics. J Chem Phys 9:341–351Google Scholar
  60. 60.
    Abragam A, Bleaney B (2012) Electron paramagnetic resonance of transition ions.Reprint edn. Oxford University Press, OxfordGoogle Scholar
  61. 61.
    Feng M, Pointillart F, Lefeuvre B, Dorcet V, Golhen S, Cador O, Ouahab L (2015) Multiple single-molecule magnet behaviors in dysprosium dinuclear complexes involving a multiple functionalized tetrathiafulvalene-based ligand. Inorg Chem 54:4021–4028PubMedGoogle Scholar
  62. 62.
    Jia C, Liu S-X, Tanner C, Leiggener C, Neels A, Sanguinet L, Levillain E, Leutwyler S, Hauser A, Decurtins S (2007) An experimental and computational study on intramolecular charge transfer: a tetrathiafulvalene-fused dipyridophenazine molecule. Chem Eur J 13:3804–3812PubMedGoogle Scholar
  63. 63.
    Pointillart F, Jung J, Berraud-Pache R et al (2015) Luminescence and single-molecule magnet behavior in lanthanide complexes involving a tetrathiafulvalene-fused dipyridophenazine ligand. Inorg Chem 54:5384–5397Google Scholar
  64. 64.
    Kuropatov V, Klementieva S, Fukin G, Mitin A, Ketkov S, Budnikova Y, Cherkasov V, Abakumov G (2010) Novel method for the synthesis of functionalized tetrathiafulvalenes, an acceptor–donor–acceptor molecule comprising of two o-quinone moieties linked by a TTF bridge. Tetrahedron 66:7605–7611Google Scholar
  65. 65.
    Pointillart F, Klementieva S, Kuropatov V, Gal YL, Golhen S, Cador O, Cherkasov V, Ouahab L (2012) A single molecule magnet behaviour in a D3h symmetry Dy(III) complex involving a quinone–tetrathiafulvalene–quinone bridge. Chem Commun 48:714–716Google Scholar
  66. 66.
    Soussi K, Jung J, Pointillart F, Guennic BL, Lefeuvre B, Golhen S, Cador O, Guyot Y, Maury O, Ouahab L (2015) Magnetic and photo-physical investigations into Dy(III) and Yb(III) complexes involving tetrathiafulvalene ligand. Inorg Chem Front 2:1105–1117Google Scholar
  67. 67.
    Huang G, Fernandez-Garcia G, Badiane I et al. Magnetic slow relaxation in a metal organic framework made of chains of ferromagnetically coupled single-molecule magnets. Chem Eur J. doi: Google Scholar
  68. 68.
    Zhang P, Jung J, Zhang L, Tang J, Le Guennic B (2016) Elucidating the magnetic anisotropy and relaxation dynamics of low-coordinate lanthanide compounds. Inorg Chem 55:1905–1911PubMedPubMedCentralGoogle Scholar
  69. 69.
    Pointillart F, Guennic BL, Golhen S, Cador O, Maury O, Ouahab L (2013) A redox-active luminescent ytterbium based single molecule magnet. Chem Commun 49:615–617Google Scholar
  70. 70.
    Pointillart F, Golhen S, Cador O, Ouahab L Slow magnetic relaxation in a redox-active tetrathiafulvalene-based ferromagnetic dysprosium complex. Eur J Inorg Chem 2014, 2014:4558–4563Google Scholar
  71. 71.
    Pointillart F, Le Guennic B, Maury O, Golhen S, Cador O, Ouahab L (2013) Lanthanide dinuclear complexes involving tetrathiafulvalene-3-pyridine-N-oxide ligand: semiconductor radical salt, magnetic, and photophysical studies. Inorg Chem 52:1398–1408PubMedGoogle Scholar
  72. 72.
    Pointillart F, Guizouarn T, Lefeuvre B, Golhen S, Cador O, Ouahab L (2015) Rational design of a lanthanide-based complex featuring different single-molecule magnets. Chem Eur J 21:16929–16934PubMedGoogle Scholar
  73. 73.
    Belio Castro A, Jung J, Golhen S, Le Guennic B, Ouahab L, Cador O, Pointillart F (2016) Slow magnetic relaxation in unprecedented mono-dimensional coordination polymer of ytterbium involving tetrathiafulvalene-dicarboxylate linker. Magnetochemistry 2:26Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS-Université de Rennes 1RennesFrance

Personalised recommendations