Advertisement

A knowledge acquisition tool for multi-perspective concept formation

  • João José Furtado Vasco
  • Colette Faucher
  • Eugène Chouraqui
Data Mining
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1076)

Abstract

In this paper, we describe an architecture for helping in the construction of concept hierarchies. This architecture is based on machine learning and on cognitive psychology studies in concept formation. Our basic assumption is that concept formation should be considered as a goal-driven, context-dependent process and, therefore, that the hierarchical organization of concepts should be represented in different perspectives. The core of our architecture is a learning system that generates multi-perspective hierarchies. The evaluation of the architecture is realized from a perspective of both the comprehensibility and the prediction power of the generated knowledge.

Keywords

Inference Rule Concept Formation Design Domain Prediction Power Concept Hierarchy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Barsalou 83]
    Barsalou, L.W.: Ad Hoc Categories. Memory and Cognition, 11(3), 1983.Google Scholar
  2. [Boose 88]
    Boose, J., Schema, D., Bradshaw, I: Recent Progress in AQUINAS: A Knowledge Acquisition Workbench. EKAW, 1988.Google Scholar
  3. [Faucher 91]
    Faucher, C.: Elaboration d'un langage extensible fondé sur les schemas le langage objlog+. Thèse de doctorat, Université de Droit, d'Economie et des Sciences d'Aix-Marseille, 1991.Google Scholar
  4. [Fisher 87]
    Fisher, D.H.: Knowledge Acquisition via Incremental Conceptual Learning. Machine Learning, vol 2, numero 2, 1987.Google Scholar
  5. [Fisher 93]
    Fisher, D., Yoo, J.: Categorization, Concept Learning, and Problem-Solving: A Unifying View. The Psychology of Learning and Motivation. Vol 29. 1993.Google Scholar
  6. [Gennari 89]
    Gennari, J.H, Langley, P., Fisher, D.: Models of Incremental Concept Formation. Artificial Intelligence, 40, 1989.Google Scholar
  7. [Gluck 85]
    Gluck, M. A., Corter, I.E.: Information, uncertainty, and the utility of categories. Proc. of the 7th Annual Conference of the Cognitive Science Society. Irvine, CA, Lawrence Erlbaum, 1985.Google Scholar
  8. [Hampton 93]
    Hampton, J. Dubois, D.: Psychological Models of Concepts: Introduction. In Categories and Concepts: Theoretical Views and Inductive Data Analysis. Academic Press, 1993.Google Scholar
  9. [Marino 90]
    Marino, O., Rechenmann, F., Uvietta, P.: Multiple Perspectives and Classification Mechanism in Object-Oriented Representation. Cognitiva 90, 1990.Google Scholar
  10. [Martin 94]
    Martin, J., Bilman, D.: Acquiring and Combining Overlapping Concepts. Machine Learning, 16, 121–155, 1994.Google Scholar
  11. [Michalski 86]
    Michalski, R., Carbonnel, J., Mitchell, T.: Machine Learning, An Intelligence Approach. Vol II. Morgan Kaufmann, CA. 1986.Google Scholar
  12. [Michalski 94]
    Michalski, R.: Inferential Theory of Learning: Developing Foundations for Multistrategy Learning. In Machine Learning: A Multistrategy Approach. Michalkski(Ed).Vol.IV. M.Kaufmann, 1994.Google Scholar
  13. [Morik 89]
    Morik, K.: Sloppy Modeling. In Knowledge Representation and Organization in Machine Learning,Morik (Ed). Spring-Verlag, 1989.Google Scholar
  14. [Morik 94]
    Morik, K.: Balanced Cooperative Modeling. Michalski and Tecuci(Eds), Machine Learning: A Multistrategy Approach. Vol. IV. Morgan Kauffmann, 1994.Google Scholar
  15. [Ram 95]
    Ram, A., Leake, D.: Goal-driven Learning. MIT Press, 1995.Google Scholar
  16. [Reich 92]
    Reich, Y., Fenves, S.: Inductive Learning of Synthesis Knowledge. International Journal of Expert Systems. Vol 5, Num. 4, 1992.Google Scholar
  17. [Rosch 75]
    Rosch, E., Mervis, C.: Family Resemblances: studies in the internal structure of categories. Cognitivie Psychology 7, 1975.Google Scholar
  18. [Seifert 89]
    Seifert, C.: A Retrieval Model Using Feature Selection. Proc. of the 6th Int. Workshop on Machine Learning. Morgan Kaufmann. 1989.Google Scholar
  19. [Smith 81]
    Smith, E.E, Medin, D.L.: Categories and Concepts. Library of Congress Cataloging in Publication Data. Cognitive Science, 1981.Google Scholar
  20. [Thaise 91]
    Thaise: L'approche logique de l'intelligence artificiel. Tome 4: De l'apprentissage artificiel aux frontières de l'IA. Chapitre 1, 1991.Google Scholar
  21. [Vasco 95a]
    Vasco, J.J.F, Faucher, C., Chouraqui, E.: Frame Hierarchies Construction using Machine Learning. 6th ASIS Conference. SIG/CR Classification Research Workshop. Chicago, 1995.Google Scholar
  22. [Vasco 95b]
    Vasco, J.J.F., Faucher, C., Chouraqui, E.: Knowledge Acquisition Based on Concept Formation Using a Multi-Perspective Representation. Florida Artificial Intelligence Research Symposium FLAIRS/95. 1995.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • João José Furtado Vasco
    • 1
  • Colette Faucher
    • 1
  • Eugène Chouraqui
    • 1
  1. 1.DIAM-IUSPIM - Université d'Aix Marseille III Av. Escadrille Normandie-NiemenMarseille Cedex 20France

Personalised recommendations