Advertisement

Bidirectional reflection distribution function expressed in terms of surface scattering modes

  • Jan J. Koenderink
  • Andrea J. van Doorn
  • Marigo Stavridi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1065)

Abstract

In many applications one needs a concise description of the Bidirectional Reflection Distribution Function (BRDF) of real materials. Because the BRDF depends on two independent directions (thus has four degrees of freedom) one typically has only a relatively sparse set of observations. In order to be able to interpolate these sparse data in a convenient and principled manner a series development in terms of an orthonormal basis is required. The elements of the basis should be ordered with respect to angular resolution. Moreover, the basis should automatically respect the inherent symmetries of the physics, i.e., Helmholtz's reciprocity and (most often) surface isotropy. We indicate how to construct a set of orthonormal polynomials on the Cartesian product of the hemisphere with itself with the required symmetry and invariance properties. These “surface scattering modes” form a convenient basis for the description of BRDF's.

Keywords

Orthonormal Basis Angular Resolution Bidirectional Reflection Distribution Function Photometric Stereo Surface Isotropy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Blinn, J.F., Models of light reflection for computer synthesized pictures, ACM Computer Graphics (SIGGRAPH 77), 19(10), pp. 542–547, 1977.Google Scholar
  2. 2.
    Born, M. and E. Wolf, Principles of optics, Pergamon Press, London, 1959.Google Scholar
  3. 3.
    nda Vinci, L., Treatise on painting, A.P.McMahon, Trnsl., Princeton University Press, Princeton, 1959.Google Scholar
  4. 4.
    Edwards, D.K., Proc.Inst.Environmental Sci., pp. 417–424 (1963)Google Scholar
  5. 5.
    Helmholtz, H.L.F. von, Treatise on physiological optics, Vol.I, p.231, Dover, New York, 1962.Google Scholar
  6. 6.
    Horn, B.K.P. and R.W. Sjoberg, Calculating the reflectance map, Applied Optics 18, pp. 1770–1779, 1979.Google Scholar
  7. 7.
    Horn, B.K.P. and M.J. Brooks, Shape from shading, MIT Press, Cambridge MA, 1989.Google Scholar
  8. 8.
    Kortüm, G., Reflectance spectroscopy, J.E.Lohr, transl., Springer, Berlin, 1969.Google Scholar
  9. 9.
    Lambert, J.H., Photometria sive de mensura de gradibus luminis, colorum et umbrÆ, Augsburg, Eberhard Klett, 1760.Google Scholar
  10. 10.
    Minnaert, M., The reciprocity principle in lunar photometry, Astrophysical Journal 93, pp. 403–410, 1941.Google Scholar
  11. 11.
    Nayar, S.K, K. Ikeuchi and T. Kanade, Surface reflection: Physical and geometrical perspectives, IEEE PAMI-13, pp. 611–634, 1991.Google Scholar
  12. 12.
    Nayar, S.K. and M. Oren, Visual appearance of matte surfaces, Science 267, pp. 1153–1156, 1995.Google Scholar
  13. 13.
    Nicodemus, F.E., J.C. Richmond, J.J. Hsia, I.W. Ginsberg and T. Limperis, Geometrical considerations and nomenclature for reflectance, NBS Monograph 160 (National Bureau of Standards, Washington, D.C., October 1977).Google Scholar
  14. 14.
    öpik, E., Photometric measures of the moon and the earth-shine, Publications de L'Observatorie Astronomical de L'Université de Tartu, 26, pp. 1–68, 1924.Google Scholar
  15. 15.
    Oren, M. and S.K. Nayar, Generalization of the Lambertian model and implications for machine vision, Int.J.Comp.Vision 14, pp. 227–251, 1995.Google Scholar
  16. 16.
    Oren, M. and S.K.Nayar, Generalization of Lambert's reflectance model, ACM Computer Graphics (SIGGRAPH 94), pp. 239–246Google Scholar
  17. 17.
    Tagare, H.D. and R.J.P.de Fegueiredo, A theory of photometric stereo for a class of diffuse non-Lambertian surfaces, IEEE PAMI-13, pp. 133–152, 1991.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Jan J. Koenderink
    • 1
  • Andrea J. van Doorn
    • 1
  • Marigo Stavridi
    • 1
  1. 1.Helmholtz InstituutUniversiteit UtrechtTA UtrechtThe Netherlands

Personalised recommendations