Advertisement

Wigner or non-wigner: That is the question

  • J. Zakrzewski
  • K. Dupret
  • D. Delande
Part II: Seminars
Part of the Lecture Notes in Physics book series (LNP, volume 457)

Abstract

It is shown that, contrary to a common belief, statistical spectral properties of systems that exhibit classically chaotic behaviour may not obey the statistics typical for Random Matrix Theory. In particular, the nearest neighbor statistics for hydrogen atom in a strong static magnetic field does not obey the usual Wigner distribution. A simple model using a set of regular states coupled to a set of chaotic states modeled by a random matrix reproduces correctly the observed distributions both in the bound regime and for resonances above the ionization threshold.

Keywords

Random Matrix Rydberg State Random Matrix Theory Semiclassical Limit Wigner Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. Bohigas in Chaos and quantum physics, edited by M.-J. Giannoni, A. Voros and J. Zinn-Justin, Les Houches Summer School, Session LII (North-Holland, Amsterdam, 1991).Google Scholar
  2. 2.
    F. Haake, Quantum Signatures of Chaos (Springer, Berlin 1991).Google Scholar
  3. 3.
    C. Iu, G.R. Welch, M.M. Kash, K. Hsu, and D. Kleppner, Phys. Rev. Lett. 63, 1133 (1989).Google Scholar
  4. 4.
    D. Delande and J.C. Gay, Phys. Rev. Lett., 57, 2006 (1986)Google Scholar
  5. 4a.
    D. Wintgen and H. Friedrich, Phys. Rev. Lett., 57, 571 (1986)Google Scholar
  6. 4b.
    G. Wunner, U. Woelk, I. Zech, G. Zeller, T. Ertl, P. Geyer, W. Schweizer and P. Ruder, Phys. Rev. Lett., 57, 3261 (1986).Google Scholar
  7. 5.
    H. Friedrich and D. Wintgen, Phys. Rep. 183, 37 (1989).Google Scholar
  8. 6.
    J. Zakrzewski, K. Dupret, and D. Delande, Phys. Rev. Lett. 74, 522 (1995).Google Scholar
  9. 7.
    D. Delande, A. Bommier and J.C. Gay, Phys. Rev. Lett. 66, 141 (1991).Google Scholar
  10. 8.
    K. Dupret, D. Delande and J. Zakrzewski, to be published.Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • J. Zakrzewski
    • 1
    • 2
  • K. Dupret
    • 1
  • D. Delande
    • 1
  1. 1.Laboratoire Kastler-BrosseUniversite Pierre et Marie CurieParisFrance
  2. 2.Instytut FizykiUniwersytet JagiellońskiKrakówPoland

Personalised recommendations