Disturbance propagation in coupled map lattices

  • Alessandro Torcini
Part II: Seminars
Part of the Lecture Notes in Physics book series (LNP, volume 457)


Propagation velocities of disturbances are analyzed in chaotic spatially extended systems with local and long-range couplings. For nearestneighbours interactions two distinct speed selection mechanisms for propagating fronts are found. One mechanism can be interpreted within a linearstability analysis, while the origin of the second one is fully non-linear. For long-range couplings, decaying as powers of the distance, the spreading-rate of disturbances increase exponentially in time.


Diffusive Coupling Epidemic Model European Economic Community Maximal Lyapunov Exponent Disturbance Propagation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.C. Cross and P.H. Hohenberg, Rev. Mod. Phys. 65, 851 (1993).Google Scholar
  2. 2.
    D. Mollison, J. Royal Statistical Society, B39, 283 (1977); in Mathematical Aspects of Rabies Epizootic, ed. P.J. Bacon (Academic Press, London, 1983).Google Scholar
  3. 3.a
    A. Kolmogorv, I. Petrovsky and N. Piskunov, Bull. Univ. Moscow, Ser. Int. Al, 1 (1937)Google Scholar
  4. 3b.
    D.G. Aronson and H.F. Weinberg, Adv. Math. 30, 33 (1978).Google Scholar
  5. 4.
    W. van Saarlos, Phys. Rev. A37, 211 (1988); Phys. Rev. A39, 6367 (1989)Google Scholar
  6. 4a.
    R.D. Benguria and M.C. Depassier, Phys. Rev. Lett. 73, 2272 (1994)Google Scholar
  7. 4b.
    W. van Saarlos, M. van Hecke and R. Holyst, preprint (1994).Google Scholar
  8. 5.a
    K. Kaneko, Prog. Theor. Phys. 72, 980 (1984)Google Scholar
  9. 5b.
    I. Waller and R. Kapral, Phys. Rev. A30, 2047 (1984).Google Scholar
  10. 6.
    G. Paladin and A. Vulpiani, J. Phys. A27, 4911 (1994).Google Scholar
  11. 7.
    A. Politi and A. Torcini, Europhys. Lett. 28, 545 (1994).Google Scholar
  12. 8a.
    K. Kaneko, Prog. Theor. Phys. 74, 1033 (1985)Google Scholar
  13. 8b.
    A.S. Pikovsky, Phys. Lett. A156, 223 (1991).Google Scholar
  14. 9.
    R.J. Deissler and K. Kaneko, Phys. Lett. A119, 397 (1987).Google Scholar
  15. 10.
    A. Politi and A. Torcini, Chaos 2, 293 (1992).Google Scholar
  16. 11.
    A. Torcini, P. Grassberger and A. Politi, to be published. *** DIRECT SUPPORT *** A3418380 00011Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Alessandro Torcini
    • 1
  1. 1.Theoretische PhysikBergische Universität-Gesamthochschule WuppertalWuppertalGermany

Personalised recommendations