Advertisement

Knowledge representation for natural language processing

  • Udo Pletat
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 636)

Abstract

We give an overview of the typed predicate logic LLILOG which serves as the target language for translating the information provided in German texts into machine processible form. Being part of the natural language understanding system LEU/2, the knowledge representation system built around LLILOG serves different purposes. Its knowledge engineering environment has been used for modeling the semantical backgound knowledge for the application domain of LEU/2. The inference engine implementing LLILOG is a flexible theorem prover for processing the information extracted from natural language texts.

Keywords

Logic Program Knowledge Representation Inference Rule Inference Engine Predicate Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Aït-Kaçi and R. Nasr. LOGIN: A logic Programming Language with Built-in Inheritance. Journal of Logic Programming, 3:185–215, 1986.Google Scholar
  2. [2]
    K. R. Apt and M. H. van Emden. Contributions to the Logic of Programming. Journal of The ACM, 29:185–215, 1982.Google Scholar
  3. [3]
    C. Beierle. Types, Modules and Databases in The Logic Programming Language PROTOS-L. In K. H. Bläsius and U. Hedtstück and C.-R. Rollinger, editor, Sorts and Types for Artificial Intelligence, volume 418 of Lecture Notes in Artificial Intelligence. Springer-Verlag, Berlin, Heidelberg, New York, 1990.Google Scholar
  4. [4]
    C. Beierle, U. Hedtstück, U. Pletat, J. Siekmann, and P. H. Schmitt. An ordersorted predicate logic for knowledge representation systems. IWBS-Report 113, IBM Deutschland GmbH, Stuttgart, 1990. To appear in AI Journal 1992.Google Scholar
  5. [5]
    C. Beierle, U. Pletat, and H. Uszkoreit. An algebraic characterization of STUF. In I. S. Batori, U. Hahn, M. Pinkal, and W. Wahlster, editors, Computerlinguistik und ihre theoretischen Grundlagen. Informatik-Fachberichte 195. Springer-Verlag, 1988.Google Scholar
  6. [6]
    T. Bollinger. A Model Elimination Calculus for Generalized Clauses. In Proceedings IJCAI 91, 1991.Google Scholar
  7. [7]
    T. Bollinger and U. Pletat. Knowledge in Operation. IWBS Report 165, IBM Deutschland, 1991.Google Scholar
  8. [8]
    T. Bollinger and U. Pletat. An Order-Sorted Predicate Logic with Sophisticated Sort Hierarchies. IWBS Report, IBM Deutschland, 1992. to appear.Google Scholar
  9. [9]
    R. J. Brachman, V. P. Gilbert, and H. J. Levesque. An Essential Hybrid Reasoning, System: Knowledge and Symbol Level Accounts of KRYPTON. In Proceedings IJCAI-85, pages 532–539, 1985.Google Scholar
  10. [10]
    R. J. Brachman and J. G. Schmolze. An overview of the KL-ONE knowledge representation system. Cognitive Science, 9(2):171–216, April 1985.Google Scholar
  11. [11]
    W. F. Clocksin and C. S. Mellish. Programming in Prolog. Springer Verlag, Berlin, Heidelberg, New York, 1981.Google Scholar
  12. [12]
    A. G. Cohn. A More Expressive Formulation of Many Sorted Logic. Journal of Automated Reasoning, 3:113–200, 1987.Google Scholar
  13. [13]
    A. M. Frisch. The substitutional framework for sorted deduction: fundamental results on hybrid reasoning. Artificial Intelligence, 49:161–198, 1991.Google Scholar
  14. [14]
    J.A. Goguen and J. Meseguer. EQLOG: Equality, Types and Generic Modules for Logic Programming. In D. DeGroot and G. Lindstrom, editors, Logic Programming, Functions, Relations and Equations. Prentice Hall, 1986.Google Scholar
  15. [15]
    H. Kamp. A theory of truth and semantic representation. In J. A. G. Groenendijk and T. M. V. Janssen and M. B. J. Stokhof, editor, Formal Methods in The Study of Language, volume 135. Mathematical Center Tracts, Amsterdam, 1981.Google Scholar
  16. [16]
    B. Hollunder, W. Nutt, and M. Schmidt-Schauss. Subsumption Algorithms for Concept Description Languages. In Proc. ECAI 90, 1990.Google Scholar
  17. [17]
    J. Dörre and R. Seiffert. A Formalism for NAtural Language — STUF. In O. Herzog and C.-R. Rollinger, editor, Textunderstanding in LILOG, volume 546 of Lecture Notes in Artificial Intelligence. Springer Verlag, Berlin, Heidelberg, New York, 1991.Google Scholar
  18. [18]
    R. T. Kasper and W. C. Rounds. A logical semantics for feature structures. In Proceedings of the 24th Annual Meeting of the Association for Computational Linguistics, pages 257–265, Columbia University, New York, 1986.Google Scholar
  19. [19]
    M. N. Khenkhar. DEPIC-2D: Eine Komponente zur depiktionalen Repräsentation und Verarbeitung räumlichen Wissens. In D. Metzing, editor, GWAI 89, pages 318–322, Berlin, Heidelberg, New York, 1989. Springer Verlag.Google Scholar
  20. [20]
    R. A. Kowalski. Predicate Logic as a Programming Language. In IFIP 74, 1974.Google Scholar
  21. [21]
    L. Karttunen. Radical lexicalism. In A. Broch and M. Baltin, editor, Alternative Conceptions of Phrase Structure. Chicago University Press, Chicago, 1989.Google Scholar
  22. [22]
    J. W. Lloyd. Foundations of Logic Programming. Symbolic Computation. Springer-Verlag, Berlin, Heidelberg, New York, 1984.Google Scholar
  23. [23]
    S. Lorenz. Nichtmonotones Schließen mit ordnungssortierten Defaults. IWBS-Report 100, IBM Deutschland, Scientific Center, January 1990.Google Scholar
  24. [24]
    A. Mycroft and R. A. O'Keefe. A polymorphic type system for Prolog. Artificial Intelligence, 23:295–307, 1984.Google Scholar
  25. [25]
    O. Herzog and C.-R. Rollinger, editor. Textunderstanding in LILOG, volume 546 of Lecture Notes in Artificial Intelligence. Springer Verlag, Berlin, Heidelberg, New York, 1991.Google Scholar
  26. [26]
    A. Oberschelp. Untersuchungen zur mehrsortigen Quantorenlogik. Mathematische Annalen, 145:297–333, 1962.Google Scholar
  27. [27]
    U. Pletat and K. v. Luck. Knowledge Representation in LILOG. In K. H. Bläsius and U. Hedtstück and C.-R. Rollinger, editor, Sorts and Types for Artificial Intelligence, volume 418 of Lecture Notes in Artificial Intelligence. Springer-Verlag, Berlin, Heidelberg, New York, 1990.Google Scholar
  28. [28]
    C. Pollard and I. A. Sag. Information Based Syntax and Semantics. Vol. I: Fundamentals. Chicago University Press, Chicago, 1987.Google Scholar
  29. [29]
    K. Schlechta. Defeasible Inheritance: Coherence Properties and Semantics. In. Michael Morreau, editor, SNS-Bericht 89-47. Seminar für natürlich-sprachliche Systeme, Univertsität Tübingen, 1989.Google Scholar
  30. [30]
    S. M. Shieber, H. Uszkoreit, F. C. N. Pereira, J. J. Robinson, and M. Tyson. The Formalism and Implementaion of PATR-II. In J. Bresnan, editor, Research on Interactive Acquisition and Use of Knowledge. Artificial Intelligence Center, SRI International, Menlo Park, CA, 1983.Google Scholar
  31. [31]
    M. E. Stickel. Automated Deduction by Theory Resolution. Journal of Automated Reasoning, 1:333–355, 1985.Google Scholar
  32. [32]
    W. A. Woods. Understanding subsumption and taxonomy: A framework for progress. TR-19-90, Harvard University, Center for Research in Computing Technology, Cambridge, MA, 1990.Google Scholar
  33. [33]
    C. Welther. A Many-Sorted Calculus Based on Resolution and Paramodulation. In Proceedings IJCAI 83, 1983.Google Scholar
  34. [34]
    C. Walther. A Mechanical Solution of Schubert's Steamroller by Many-Sorted Resolution. Artificial Intelligence, 26:217–224, 1985.Google Scholar
  35. [35]
    C. Walther. Many-sorted unification. Journal of the ACM, 35(1):1–17, January 1988.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Udo Pletat
    • 1
  1. 1.Software Architectures and TechnologiesIBM GermanyStuttgart 80Germany

Personalised recommendations