A systemic approach for student modelling in a multi-agent aided learning environment

  • Patrick Néhémie
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 608)


In this paper, we intend to tackle the analysis of student modelling in aided learning environments by adopting a systemic approach. The approach relates both to a study of the interactions of the student model with its environment and to an analysis, in varying degrees of depth, of its internal organisation.Having presented multi-agent (or multi-expert) learning environments as systems with multiple deciders, we present the agent responsible for the student modelling itself as a system and we analyse it as such. This systemic approach to student modelling is deliberately methodological. It is the one which we use in the study for the AMICAL project (reading scheme). It can be called upon the definition of the needs and the objectives of learner modelling when a aided learning environment is being designed.


Modelling Agent Reading Scheme Synthetic Model Learning Session Historical Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bruneau J., Chambreuil A., Chambreuil M., Chanier T., Dulin M, Lotin P., Néhémie P. (1991). Cognitive Science, artificial intelligence, new technologies: how to cooperate for a computer-assisted learning to read system. The International Conference on the Learning Sciences, Evanston, USA.Google Scholar
  2. Chambreuil A.and Chambreuil M. (1990). Advanced Information Technologies: Prospect for Learning to Read. EURIT'90, Herning, Denmark.Google Scholar
  3. Clancey W.J. (1986). Qualitative Student Models. Annual Review of Computer Science, vol 1.Google Scholar
  4. de Rosnay J. (1975). Le macroscope. Paris: Le Seuil.Google Scholar
  5. Dillenbourg P.and Self J. (1990). A Framework for Learner Modeling. Report for the NAT*LAB project. EEC's DELTA ProgramGoogle Scholar
  6. Engelmore R.S.and Morgan A.J. (1988). Blackboard Systems. New York: Addison-Wesley.Google Scholar
  7. Frasson C. and de la Passardière B. (1989). Modélisation de l'apprenant: une approche contextuelle. 6ème symposium canadien sur la technologie pédagogique.Google Scholar
  8. Frasson C. (1991). Systèmes tutoriels intelligents: état et perspectives en Amérique du Nord. Génie Educatif.n∘1. ParisGoogle Scholar
  9. Gasser L.and Huhms M.N. (1989). Distributed Artificial Intelligence. London: Morgan Kaufmann.Google Scholar
  10. Gouardères G. (1991). Le génie éducatif: pour que l'arbre EAO ne cache plus la forêt. Génie Educatif.n∘1. ParisGoogle Scholar
  11. Huang X., Mac Calla G.I., Greer J.E. and Neufeld E. Revising Deductive Knowledge and Stereotypical Knowledge in a Student Model. User Modelling & User-adapted Interaction 1: 85–115. Kluwer Academic Publishers.Google Scholar
  12. Kobsa A. (1990). Modelling the User's Conceptual Knowledge in BPG-MS, a User Modelling Shell System. Computational Intelligence, vol 6.Google Scholar
  13. Laasri H. and Maître B. (1989). Coopération dans un univers multi-agents basée sur le modèle du blackboard: études et réalisations. Doctorat de l'Université de Nancy I.Google Scholar
  14. Lesourne J. (1976). Les systèmes du destin. Paris: Dalloz.Google Scholar
  15. Minsky M. (1986). The Society of Mind. New York: Simon and Schuster.Google Scholar
  16. Piager J. and Inhelder B. (1966). La psychologie de l'enfant. Paris: P.U.F.Google Scholar
  17. Perfetti C. and Rieben L. (1989). L'Apprenti Lecteur. Neuchatel: Delachaux et Niestlé.Google Scholar
  18. Richard J.F. (1990). Les activités mentales. Paris: A.Colin.Google Scholar
  19. Self J. (1988a). Student Models: what Use are they? in Ercoli P.and Lewis R: Artificial Intelligence Tools in Education. Amsterdam: North-Holland.Google Scholar
  20. Self J. (1988b). The Use of Belief Systems for Student Modeling. Congrès Européen IA et formation, Lille.Google Scholar
  21. Sètre I. (1989). Modélisation de l'apprenant et croyances dans un système d'aide à l'apprentissage de la lecture. Rapport de DEA. Clermont-Ferrand: Université Blaise Pascal.Google Scholar
  22. Wenger E. (1987). Artificial Intelligence and Tutoring Systems. Los Altos: Morgan Kaufmann.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Patrick Néhémie
    • 1
  1. 1.Laboratoire d'InformatiqueUniversité Blaise Pascal de Clermont-FerrandAubiereFrance

Personalised recommendations