Model-based object tracking in traffic scenes

  • D. Koller
  • K. Daniilidis
  • T. Thórhallson
  • H. -H. Nagel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 588)


This contribution addresses the problem of detection and tracking of moving vehicles in image sequences from traffic scenes recorded by a stationary camera. In order to exploit the a priori knowledge about the shape and the physical motion of vehicles in traffic scenes, a parameterized vehicle model is used for an intraframe matching process and a recursive estimator based on a motion model is used for motion estimation. The initial guess about the position and orientation for the models are computed with the help of a clustering approach of moving image features. Shadow edges of the models are taken into account in the matching process. This enables tracking of vehicles under complex illumination conditions and within a small effective field of view. Results on real world traffic scenes are presented and open problems are outlined.


Line Segment Motion Model Extend Kalman Filter Matching Process Vehicle Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [Bar-Shalom & Fortmann 88]
    Y. Bar-Shalom, T.E. Fortmann, Tracking and Data Association, Academic Press, New York, NY, 1988.Google Scholar
  2. [Deriche & Faugeras 90]
    R. Deriche, O. Faugeras, Tracking line segments, Image and Vision Computing 8 (1990) 261–270.Google Scholar
  3. [Evans 90]
    R. Evans, Kalman Filtering of pose estimates in applications of the RAPID video rate tracker, in Proc. British Machine Vision Conference, Oxford, UK, Sept. 24–27, 1990, pp. 79–84.Google Scholar
  4. [Gelb 74]
    A. Gelb (ed.), Applied Optimal Estimation, The MIT Press, Cambridge, MA and London, UK, 1974.Google Scholar
  5. [Gennery 82]
    D.B. Gennery, Tracking known three-dimensional objects, in Proc. Conf. American Association of Artificial Intelligence, Pittsburgh, PA, Aug. 18–20, 1982, pp. 13–17.Google Scholar
  6. [Grimson 90a]
    W.E.L. Grimson, Object recognition by computer: The role of geometric constraints, The MIT Press, Cambridge, MA, 1990.Google Scholar
  7. [Grimson 90b]
    W. E. L. Grimson, The combinatorics of object recognition in cluttered environments using constrained search, Artificial Intelligence 44 (1990) 121–165.Google Scholar
  8. [Harris & Stennet 90]
    C. Harris, C. Stennet, RAPID — A video rate object tracker, in Proc. British Machine Vision Conference, Oxford, UK, Sept. 24–27, 1990, pp. 73–77.Google Scholar
  9. [Jazwinski 70]
    A.H. Jazwinski, Stochastic Processes and Filtering Theory, Academic Press, New York, NY and London, UK, 1970.Google Scholar
  10. [Koller et al. 91]
    D. Koller, N. Heinze, H.-H. Nagel, Algorithmic Characterization of Vehicle Trajectories from Image Sequences by Motion Verbs, in IEEE Conf. Computer Vision and Pattern Recognition, Lahaina, Maui, Hawaii, June 3–6, 1991, pp. 90–95.Google Scholar
  11. [Korn 88]
    A. F. Korn, Towards a Symbolic Representation of Intensity Changes in Images, IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-10 (1988) 610–625.Google Scholar
  12. [Lowe 85]
    D. G. Lowe, Perceptual Organization and Visual Recognition, Kluwer Academic Publishers, Boston MA, 1985.Google Scholar
  13. [Lowe 87]
    D. G. Lowe, Three-Dimensional Object Recognition from Single Two-Dimensional Images, Artificial Intelligence 31 (1987) 355–395.Google Scholar
  14. [Lowe 90]
    D. G. Lowe, Integrated Treatment of Matching and Measurement Errors for Robust Model-Based Motion Tracking, in Proc. Int. Conf. on Computer Vision, Osaka, Japan, Dec. 4–7, 1990, pp. 436–440.Google Scholar
  15. [Lowe 91]
    D.G. Lowe, Fitting parameterized three-dimensional models to images, IEEE Transactions on Pattern Analysis and Machine Intelligence 13 (1991) 441–450.Google Scholar
  16. [Marslin et al. 91]
    R.F. Marslin, G.D. Sullivan, K.D. Baker, Kalman Filters in Constrained Model-Based Tracking, in Proc. British Machine Vision Conference, Glasgow, UK, Sept. 24–26, 1991, pp. 371–374.Google Scholar
  17. [Maybank 90]
    S. Maybank, Filter based estimates of depth, in Proc. British Machine Vision Conference, Oxford, UK, Sept. 24–27, 1990, pp. 349–354.Google Scholar
  18. [Murray et al. 89]
    D.W. Murray, D.A. Castelow, B.F. Buxton, From image sequences to recognized moving polyhedral objects, International Journal of Computer Vision 3 (1989) 181–208.Google Scholar
  19. [Scales 85]
    L. E. Scales, Introduction to Non-Linear Optimization, Macmillan, London, UK, 1985.Google Scholar
  20. [Schick & Dickmanns 91]
    J. Schick, E. D. Dickmanns, Simultaneous estimation of 3D shape and motion of objects by computer vision, in Proc. IEEE Workshop on Visual Motion, Princeton, NJ, Oct. 7–9, 1991, pp. 256–261.Google Scholar
  21. [Thompson & Mundy 87]
    D.W. Thompson, J.L. Mundy, Model-based motion analysis — motion from motion, in The Fourth International Symposium on Robotics Research, R. Bolles and B. Roth (ed.), MIT Press, Cambridge, MA, 1987, pp. 299–309.Google Scholar
  22. [Thórhallson 91]
    T. Thórhallson, Untersuchung zur dynamischen Modellanpassung in monokularen Bildfolgen, Diplomarbeit, Fakultät für Elektrotechnik der Universität Karlsruhe (TH), durchgeführt am Institut für Algorithmen und Kognitive Systeme, Fakultät für Informatik der Universität Karlsruhe (TH), Karlsruhe, August 1991.Google Scholar
  23. [Tsai 87]
    R. Tsai, A versatile camera calibration technique for high accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses, IEEE Trans. Robotics and Automation 3 (1987) 323–344.Google Scholar
  24. [Verghese et al. 90]
    G. Verghese, K.L. Gale, C.R. Dyer, Real-time, parallel motion tracking of three dimensional objects from spatiotemporal images, in V. Kumar, P.S. Gopalakrishnan, L.N. Kanal (ed.), Parallel Algorithms for Machine Intelligence and Vision, Springer-Verlag, Berlin, Heidelberg, New York, 1990, pp. 340–359.Google Scholar
  25. [Worrall et al. 91]
    A.D. Worrall, R.F. Marslin, G.D. Sullivan, K.D. Baker, Model-Based Tracking, in Proc. British Machine Vision Conference, Glasgow, UK, Sept. 24–26, 1991, pp. 310–318.Google Scholar
  26. [Wu et al. 88]
    J.J. Wu, R.E. Rink, T.M. Caelli, V.G. Gourishankar, Recovery of the 3-D location and motion of a rigid object through camera image (an Extended Kalman Filter approach), International Journal of Computer Vision 3 (1988) 373–394.Google Scholar
  27. [Young & Chellappa 90]
    G. Young, R. Chellappa, 3-D Motion estimation using a sequence of noisy stereo images: models, estimation and uniqueness results, IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-12 (1990) 735–759.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • D. Koller
    • 1
  • K. Daniilidis
    • 1
  • T. Thórhallson
    • 1
  • H. -H. Nagel
    • 1
    • 2
  1. 1.Institut für Algorithmen und Kognitive Systeme Fakultät für InformatikUniversität Karlsruhe (TH)Karlsruhe 1Germany
  2. 2.Fraunhofer-Institut für Informations- und Datenverarbeitung (IITB)Karlsruhe

Personalised recommendations