Some physical applications of category theory

  • Shahn Majid
2. Quantum Groups and Integrable Systems
Part of the Lecture Notes in Physics book series (LNP, volume 375)


We explain the physical meaning of some recent results in category theory: Associated to any topological quantum field theory (in the sense of a functor) is a quasiquantum group of internal symmetries. Associated to any algebraic quantum field theory (where there is no functor) is a braided group. We also mention some joint work relating Chern-Simons theory to quantum mechanics in a bounded domain.


Hopf Algebra Quantum Group Natural Transformation Category Theory Braided Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Doplicher, J. E. Roberts: Comm. Math. Phys. 131 51 (1990)Google Scholar
  2. 2.
    V.G. Drinfeld: Quasi-Hopf algebras and Knizhnik-Zamolodchikov equations, Acad. Sci. Ukr. preprint (1989)Google Scholar
  3. 3.
    K. Fredenhagen, K. H. Rehren, B. Schroer: Comm. Math. Phys. 125 201 (1989); R. Longo: Comm. Math. Phys. 126 217 (1989)Google Scholar
  4. 4.
    P. Goddard: Meromorphic conformal field theory, in V.G. Kac ed., Infinite Dimensional Lie Algebras and Lie Groups, World Sci. (1989)Google Scholar
  5. 5.
    A. Joyal, R. Street: Macquarie Univ. Math. Rep. 86008 (1986)Google Scholar
  6. 6.
    S. Kobayashi, K. Nomizu: Foundations of Differential Geometry, Wiley (1969)Google Scholar
  7. 7.
    S. Maclane: Categories for the Working Mathematician. Springer (1974)Google Scholar
  8. 8.
    S. Majid: Int. J. Modern Physics A 51–91 (1990)Google Scholar
  9. 9.
    S. Majid: Reconstruction theorems and rational conformal field theories, preprint (1989)Google Scholar
  10. 10.
    S. Majid: Quasi-quantum groups as internal symmetries of topological quantum field theories, preprint (1990)Google Scholar
  11. 11.
    S. Majid: Braided groups and algebraic quantum field theories, preprint (1990)Google Scholar
  12. 12.
    S. Majid, Ya. S. Soibelman: Rank of quantized universal enveloping algebras and modular functions, preprint (1990)Google Scholar
  13. 13.
    S. Majid, Ya. S. Soibelman: Chern-Simons theory, modular functions and quantum mechanics in an alcove, to appear Int. J. Mod. Phys. A (1990)Google Scholar
  14. 14.
    S. Majid: On q-regularization, to appear Int. J. Mod. Phys. A (1990)Google Scholar
  15. 15.
    S. Majid: Representations, duals and quantum doubles of monoidal categories, to appear Supl. Rend. Circ. Mat. Palermo (1989)Google Scholar
  16. 16.
    S. Majid: Non-commutative-geometric Groups by a Bicrossproduct Construction, PhD thesis, Harvard (1988), J. Class. Quant. Grav. 5 1587 (1988), J. Algebra 130 17–64 (1990), Principle of representation-theoretic self-duality, preprint (1988)Google Scholar
  17. 17.
    G. Moore, N. Seiberg: Comm. Math. Phys. 123 177 (1989)Google Scholar
  18. 18.
    G. Segal: The definition of conformal field theory, preprint (1988); M.F. Atiyah, N. Hitchin, R. Lawrence, and G. Segal: Oxford seminar on JonesWitten theory, notes (1988)Google Scholar
  19. 19.
    K.-H. Ulbrich: On Hopf algebras and rigid monoidal categories, to appear Isr. J. Math (1990)Google Scholar
  20. 20.
    D. N. Yetter: Quantum groups and representations of monoidal categories, preprint (1989); A. Rozenberg: Hopf algebras and Lie algebras in categories with multiplication, preprint, in Russian (1978)Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Shahn Majid
    • 1
  1. 1.Department of Applied Mathematics & Theoretical PhysicsCambridgeU.K

Personalised recommendations