Advertisement

Higgs fields and superconnections

  • R. Coquereaux
1. Non-commutative Differential Geometry
Part of the Lecture Notes in Physics book series (LNP, volume 375)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Coquereaux, G. Esposito-Farese, G. Vaillant, Higgs fields as Yang-Mills fields and discrete symmertries. C.P.T. preprint, (1990)/P. 2407.Google Scholar
  2. [2]
    A. Connes, J. Lott, Particle models and Non-commutative geometry, I.H.E.S. preprint, 1990.Google Scholar
  3. [3]
    R. Coquereaux, A. Jadczyk: Symmetries of Einstein-Yang-Mills fields, Commun. Math. Phys. 98, 1985.Google Scholar
  4. [4]
    M. Dubois-Violette, R. Kerner, J. Madore, Non-commutative differential geometry and new models of gauge theory, J. Math. Phys. 31, 1990.Google Scholar
  5. [5]
    D. Quillen, V. Matthai, Superconnections, Thom classes, and equivariant differential forms, Topology 25, 1985.Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • R. Coquereaux
    • 1
  1. 1.Centre de Physique ThéoriqueCNRS LuminyMarseille Cedex 9France

Personalised recommendations