Systems theory challenges in the simulation of variable structure and intelligent systems

  • Bernard P. Zeigler
  • Herbert Praehofer
General CAST Methodology
Part of the Lecture Notes in Computer Science book series (LNCS, volume 410)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Kim, T. G. (1988) A Knowledge-Based Environment for Hierarchical Modelling and Simulation, Doctoral Dissertation, University of Arizona, Tucson, Arizona.Google Scholar
  2. Mesarovic, M.D., D. Macko, and Y. Takahara (1970) Theory of Hierarchical, Multilevel, Systems Academic Press, New York 1970Google Scholar
  3. Oren, T. (1989) Dynaimc Templates and Semantic Rules for Simulation Advisors and Certifiers To be published in: P.A. Fishwick and R.B. Modjeski (Eds.), Knowledge-Based Simulation: Methodology and Application Springer Verlag, Berlin, Heidelberg, New York, TokyoGoogle Scholar
  4. Praehofer, Herbert and Bernard P. Zeigler (1989) Modelling and Simulation of Non-Homogeneous Models Lecture Notes in Computer Science, Springer Verlag, Berlin (this volume)Google Scholar
  5. Reynolds, R (1989) "Cooperation in Social Models", Biosystems (to appear).Google Scholar
  6. Rozenblit, Jerzy W. and Yueh-Min Huang (1987) Constraint-Driven Generation of Model Structures Proc. of the 1987 Winter Simulation Conference, San Diego, CA.Google Scholar
  7. Rozenblit, Jerzy W. (1988) System Theoretic Simulation Modelling Proc. of the 1988 Winter Simulation Conference, San Diego, CA, December 1988.Google Scholar
  8. Rozenblit, Jerzy W., Tag Gon Kim and Bernard P. Zeigler (1988) Towards an Implementation of a Knowledge-Based System Design and Simulation Environment Proc. of the 1988 Winter Simulation Conference, San Diego, CA, December 1988.Google Scholar
  9. Zeigler, Bernard P. (1976) Theory of Modelling and Simulation John Wiley, New York.Google Scholar
  10. Zeigler, Bernard P. (1984) Multifacetted Modelling and Discrete Event Simulation, Academic Press, London.Google Scholar
  11. Zeigler, Bernard P. (1984a) System-Theoretic Representation of Simulation Models, IIE Transactions, March, pp. 19–34.Google Scholar
  12. Zeigler, Bernard P. (1985) Discrete event formalism for model based distributed simulation, in: Distributed Simulation 1985, eds.: Paul Reynolds, Proceedings of the Conference of Distributed Simulation, Society of Computer Simulation, San Diego, California.Google Scholar
  13. Zeigler, Bernard P. (1986) Toward a Simulation Methodology for Variable Structure Modelling in: Modelling and Simulation Methodology in the Artificial Intelligence Era, eds.: Elzas, M.S., T.I. Oren and B. P. Zeigler, North Holland, Amsterdam 1986.Google Scholar
  14. Zeigler, Bernard P. (1987) Hierarchical, Modular Discrete Event Simulation in an Object Oriented Environment, Simulation Journal, vol 49:5, pp. 219–230.Google Scholar
  15. Zeigler, Bernard P. (1987b) Knowledge Representation from Newton to Minsky and Beyond Applied Artificial Intelligence, Vol. 1, pp. 87–107.Google Scholar
  16. Zeigler, Bernard P. (1988) DEVS-Scheme User's Manual, Department of Electrical and Computer Engineering, University of Arizona, Tucson, Arizona.Google Scholar
  17. Zeigler, Bernard P. (1989), DEVS-Based Simulation: The Models-as-Knowledge Paradigm, Academic Press (in preparation).Google Scholar
  18. B.P. Zeigler, F.E. Cellier, and J.W. Rozenblit (1988), Design of a Simulation Environment for Laboratory Management by Robot Organizations, J. Intelligent and Robotic Systems, Vol 1, No. 3, 1988, pp. 299–309.Google Scholar
  19. B.P. Zeigler (1989a), The DEVS Formalism: Event-based Control for Intelligent Systems, Proceedings of IEEE, Vol. 77, No. 1, (1989), pp. 27–80.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Bernard P. Zeigler
    • 1
  • Herbert Praehofer
    • 2
  1. 1.Al and Simulation Group Dept. of Electrical & Computer Eng.University of ArizonaTucson
  2. 2.Dept. of Systems TheoryUniversity of LinzLinzAustria

Personalised recommendations