Advertisement

TIPPtool: Compositional Specification and Analysis of Markovian Performance Models

  • H. Hermanns
  • V. Mertsiotakis
  • M. Siegle
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1633)

Abstract

In this short paper we briefly describe a tool which is based on a Markovian stochastic process algebra. The tool offers both model specification and quantitative model analysis in a compositional fashion, wrapped in a userfriendly graphical front-end.

Keywords

Markov Chain Markov Chain Model Label Transition System Process Algebra ISDN System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    T. Bolognesi and E. Brinksma. Introduction to the ISO Specification Language LOTOS. In The Formal Description Technique LOTOS, pages 23–73, Amsterdam, 1989. North-Holland.Google Scholar
  2. 2.
    Jean-Claude Fernandez, Hubert Garavel, Alain Kerbrat, Radu Mateescu, Laurent Mounier, and Mihaela Sighireanu. Cadp (cæsar/aldebaran development package):Aprotocol validation and verification toolbox. In Proceedings of the 8th Conference on Computer-AidedVerification (CAV 96), Springer LNCS 1102:437–440. August 1996.Google Scholar
  3. 3.
    S. Gilmore, J. Hillston, R. Holton, and M. Rettelbach. Specifications in Stochastic Process Algebra for a Robot Control Problem. International Journal of Production Research 34(4):1065–1080, 1996.CrossRefGoogle Scholar
  4. 4.
    F. Hartleb and A. Quick. Performance Evaluation of Parallel Programms-Modeling and Monitoring with the Tool PEPP. In Proceedings of 7th GI-ITG Fachtagung „Messung, Modellierung und Bewertung von Rechen-und Kommunikationssystemen“, pages 51–63. Informatik Aktuell, Springer. September 1993.Google Scholar
  5. 5.
    H. Hermanns, U. Herzog, U. Klehmet, V. Mertsiotakis, and M. Siegle. Compositional Performance Modelling with the TIPPtool. In 10th International Conference on Modelling Techniques and Tools for Computer Performance Evaluation (TOOLS 98), Springer LNCS 1469:51–62. September 1998.zbMATHGoogle Scholar
  6. 6.
    H. Hermanns, U. Herzog, and V. Mertsiotakis. Stochastic ProcessAlgebras-BetweenLOTOS and Markov Chains. Computer Networks and ISDN Systems, 30(9-10):901–924, 1998.CrossRefGoogle Scholar
  7. 7.
    H. Hermanns and J.P. Katoen. Automated Compositional Markov Chain Generation for a Plain Old Telephony System. Science of Computer Programming. to appear.Google Scholar
  8. 8.
    U. Herzog. A Concept for Graph-Based Stochastic Process Algebras, Generally Distributed Activity Times and Hierarchical Modelling. In Proc. of the 4th Workshop on Process Algebras and Performance Modelling, pages 1–20. Universitáa di Torino, CLUT, 1996.Google Scholar
  9. 9.
    J. Hillston and V. Mertsiotakis. A Simple Time Scale Decomposition Technique for SPAs. In The Computer Journal, 38(7):566–577, 1995.CrossRefGoogle Scholar
  10. 10.
    J.G. Kemeny and J.L. Snell. Finite Markov Chains. Springer, 1976.Google Scholar
  11. 11.
    J.A. Manas, T. de Miguel, and J. Salvachua. Tool Support to ImplementLOTOS Specifications. Computer Networks and ISDN Systems, 25(7):815–839, 1993.CrossRefGoogle Scholar
  12. 12.
    V. Mertsiotakis and M. Silva. Throughput Approximation of Decision Free Processes Using Decomposition. In Proc. of the 7th Int. Workshop on Petri Nets and Performance Models, pages 174–182, St. Malo, June 1997. IEEE CS-Press.Google Scholar
  13. 13.
    M. Siegle, B. Wentz, A. Klingler, and M. Simon. DeNeue Ansätze zur Planung von Klinikkommunikationssystemen mittels stochastischer Leistungsmodellierung. In 42. Jahrestagung der Deutschen Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie (GMDS), pages 188–192, Ulm, September 1997. MMV Medien & Medizin Verlag.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • H. Hermanns
    • 1
  • V. Mertsiotakis
    • 2
  • M. Siegle
    • 1
  1. 1.Informatik 7Universität Erlangen-NürnbergErlangenGermany
  2. 2.Systems Validation CentreUniversity of TwenteEnschede NüurnbergThe Netherlands

Personalised recommendations