Advertisement

Parallelism in Aldor — The Communication Library Пit for Parallel, Distributed Computation

  • Thierry Gautier
  • Niklaus Mannhart
Conference paper
  • 41 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1685)

Abstract

In this paper, we present the design of Пit, an Aldor library to express parallel programs. Aldor is a general purpose programmingv language designed for computer algebra and Пit provides an Aldor low-level interface that interacts with hardware or system tools in order to express parallelism. Additionally, Пit provides an API that hides any low-level details such as sending messages, creating threads and provides an interface for data parallelism. This paper presents our design decisions and our implementation as well as examples of how easy Aldor programmers can implement parallel algorithms in a high-level abstract way with Пit.

Keywords

Shared Memory Message Passing Interface Computer Algebra Runtime System Shared Object 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [1]
    Peter A. Broadbery. FOAM-An Intermediate Language Description. unpublished draft version.Google Scholar
  2. [2]
    Tilmann Bubeck, Martin Hiller, Wolfgang Küchlin, and Wolfgang Rosenstiel. Distributed Symbolic Computation with DTS. In Afonso Ferreira and Jose Rolim, editors, Proceedings of Parallel Algorithms for Irregularly Structured Problems, LNCS 980. Springer, Sep 1995.Google Scholar
  3. [3]
    A. Carissimi and M. Pasin. Athapascan: An experience on Mixing MPI Communications and Threads. In Vassil Alexandreov and Jack Dongarra, editors, Proceedings of 5th European PVM/MPI Users’ Group Meeting, LNCS 1497, pages 137–144, Liverpool, UK, sep 1998. Springer Verlag.Google Scholar
  4. [4]
    K.C. Chan, A. Díaz, and E. Kaltofen. A distributed apporach to problem solving in Maple. In R. Lopez, editor, Maple Summer Workshop and Sympsium, Maple V: Mathematics and Application, pages 13–21, Boston, 1994. Brikhäuser Verlag.Google Scholar
  5. [5]
    Bruce Char and Jeremy Johnson. Some Experiments with Parallel Bignum Arithmetic. In Hoon Hong, editor, Parallel Symbolic Computation, PASCO, pages 94–103, Sep 1994.Google Scholar
  6. [6]
    Burce Char. Progress report on a system for general-purpose parallel symbolic alg ebraic computation. In International Symposium on Symbolic and Algebraic Computation, ISSAC, 1990.Google Scholar
  7. [7]
    M. Christaller, M.-R. Castaneda Retiz, and T. Gautier. Control Parallelism on top of PVM: The Athapascan Environment. In Jack Dongarra, Marc Gengler, Bernard Tourancheau, and Xavier Vigouroux, editors, Proc. Second European PVM User’s Group Meeting, pages 71–76, Ecole Nationale Suprieure, Lyon, France, 1995 1995. Hermes.Google Scholar
  8. [8]
    A. Diaz, M. Hitz, A. Lobo, and T. Valente. Process Scheduling in DSC and the Large Sparse Linear Systems Challenge. Journal of Symbolic Computation, 11(1-000), 1994.Google Scholar
  9. [9]
    A. Diaz, E. Kaltofen, K. Schmitz, and T. Valente. DSC A System for Distributed Symbolic Computation. In S.M. Watt, editor, International Symposium on Symbolic and Algebraic Computation, ISSAC, pages 323–332, 1991.Google Scholar
  10. [10]
    The MPI forum. MPI: A Message Passing Interface. Technical report, University of Tenessee, Knoxville, 1993.Google Scholar
  11. [11]
    I. Foster, C. Kesselman, R. Olson, and S. Tuecke. Nexus: An Interoperability toolkit for parallel and distributed computer systems. Technical Report ANL/MCS-TM-189, Argonne National Laboratory, 1993.Google Scholar
  12. [12]
    R. Loos G.E. Collins. ALDES/SAC-2 Now Available. ACM SIGSAM, 1982.Google Scholar
  13. [13]
    Franois Galile, Jean-Louis Roch, Gerson G.H. Cavalheiro, and Ma htias Doreille. A General Modular Specification for Distributed Schedulers. In Pact’98, Paris, France.,October 1998.Google Scholar
  14. [14]
    T. Gautier. Calcul Formel et Parallélisme: Conception du Système PAC et Applications au Calcul dans les Extensions Algébriques. PhD thesis, Institut National Polytechnique de Grenoble, 1996.Google Scholar
  15. [15]
    T. Gautier and J.L. Roch. PAC++ system and parallel algebraic numbers computations. In Hoon Hong, editor, PASCO’94, volume 5 of Lecture Notes Series on Computing, pages 145–153. World Scientific Publishing Co. Pte. Ltd., 1994.Google Scholar
  16. [16]
    Wolfgang Küchlin. PARSAC-2: A Parallel SAC-2 Based on Threads. Lecture Notes in Computer Science, LNCS 508:341–353, 1990.Google Scholar
  17. [17]
    H. Naundorf. Parallelism in MuPAD. In First IMACS Conference on Applications of Computer Algebra, Albuquerque, NM USA, 1995.Google Scholar
  18. [18]
    J.-L. Roch and G. Villard. Parallel computer algebra. Tutorial of ISSAC’97, Preprint IMAG Grenoble, France, July 1997. http://www-lmc.imag.fr/~gvillard/ BIBLIOGRAPHIE/POSTSCRIPT/tutorial.ps.
  19. [19]
    Wolfgang Schreiner. A Para-Functional Programming Interface for a Parallel Computer Algebra Package. Journal of Symbolic Computation, 11:1–22, 1996.Google Scholar
  20. [20]
    K. Siegl. jjMaplejj-A system for parallel symbolic computations. In Parallel Systems Fair at the 7th International Parallel Processing Symposium, Newport Beach, CA, April 1993.Google Scholar
  21. [21]
    S.M. Watt et al. Axiom Library Compiler User Guide. NAG Ltd, 1994.Google Scholar
  22. [22]
    Stephen M. Watt et al. FOAM: A First Order Abstract Machine, V 0.35. Technical report, IBM Thomas J. Watson Research Center, RC 19528, 1994.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Thierry Gautier
    • 1
  • Niklaus Mannhart
    • 2
  1. 1.INRIA, project APACHEGrenoble Cedex 9France
  2. 2.Institute for Scientific ComputinZürichSwitzerland

Personalised recommendations