Advertisement

PAMIHR. A Parallel FORTRAN Program for Multidimensional Quadrature on Distributed Memory Architectures

  • G. Laccetti
  • M. Lapegna
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1685)

Abstract

PAMIHR: a parallel adaptive routine for the approximate computation of a multidimensional integral over a hyperrectangular region is described. The software is designed to efficiently run on a MIMD distributed memory environment, and it’s based on the widely diffused communication system BLACS. PAMIHR, further, gives special attention to the problems of scalability and of load balancing among the processes.

References

  1. 1.
  2. [1]
    Berntsen J. -Practical error estimation in adaptive multidimensional quadrature routines-J. Comput. Appl. Math., vol. 25 (1989), pp. 327–340.Google Scholar
  3. [2]
    Berntsen J., T.O. Espelid, A.C. Genz-Algorithm 698: DCUHRE-An adaptive multidimensional integration routine for a vector of integrals-ACM Trans. on Math. Software, vol. 17 (1991), pp. 452–456Google Scholar
  4. [3]
    de Doncker E., J. Kapenga-Parallel Cubature on Loosely Coupled Systems-in Numerical Integration: Recent developments, software and Applications (T. Espelid and A. Genz eds.), Kluwer, 1992, pp. 317–327.Google Scholar
  5. [4]
    Dongarra J., R.C. Whaley-A user’s guide to the BLACS v1.0-Tech. Rep. CS-95-281, LAPACK Working Note no. 94, Univ. of Tennessee, 1995.Google Scholar
  6. [5]
    Genz A.C.-The numerical evaluation of multiple integrals on parallel computers-in Numerical Integration (P. Keast and G. Fairweather eds.), D. Reidel Publishing Co., 1987, pp. 219–230.Google Scholar
  7. [6]
    Genz A.C.-A Package for Testing Multiple Integration Subroutines-in Numerical Integration, (P. Keast, G. Fairweather, eds.), D. Reidel Publishing Co., 1987, pp. 337–340.Google Scholar
  8. [7]
    Genz A.C., A.A. Malik-An imbedded family of fully symmetric numerical integration rules-SIAM J. Num. Anal., vol. 20 (1983), pp. 580–588.Google Scholar
  9. [8]
    Gustafson J., G. Montry and R. Benner-Development of parallel methods for a 1024 processor hypercube-SIAM J. on Scientific and Statistic Computing, Vol. 9 (1988), pp. 580–588.Google Scholar
  10. [9]
    Laccetti G., M. Lapegna, A. Murli-DSMINT. A Scalable Double Precision FORTRAN Program to Compute Multidimensional Integrals-Tech. Rep. CPS-96-9 Center for Research on Parallel Computing and Supercomputers, 1996.Google Scholar
  11. [10]
    Lapegna M.-Global adaptive quadrature for the approximate computation of multidimensional integrals on a distributed memory multiprocessor-Concurrency: Practice and Experiences, vol. 4 (1992), pp. 413–426Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • G. Laccetti
    • 1
  • M. Lapegna
    • 1
  1. 1.Center for Research on Parallel Computing and Supercomputers - CNRUniversity of Naples “Federico II”NapoliItaly

Personalised recommendations