Advertisement

On the Extension of the Code GAM for Parallel Computing⋆

  • Felice Iavernaro
  • Francesca Mazzia
Conference paper
  • 80 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1685)

Abstract

The code GAM numerically solves initial value ordinary differential equations by means of a family of variable-step variable-order block Boundary Value Methods. Here we consider the possibility of performing the code on parallel machines. Some numerical tests and comparisons are presented.

Key words

linear multistep formulas Runge-Kutta methods stiff initial value problems 

References

  1. [1]
    Bellen, A.: Pade test-A set of real-life test differential equations for parallel computing, Technical Report 103, Università di Trieste (1992)Google Scholar
  2. [2]
    Bendtsen, C.: A parallel stiff ODE solver based on MIRKs, Adv. Comput. Math. 7 1-2 (1997) 27–36Google Scholar
  3. [3]
    Brugnano L., Trigiante D.: Solving Differential Problems by Multistep Initial and Boundary Value Methods, Gordon & Breach, Amsterdam, (1998)Google Scholar
  4. [4]
    Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Equations, Springer Series in Computational Mathematics,14, Springer-Verlag, Berlin, (1996)Google Scholar
  5. [5]
    Hairer, E., Wanner, G.: RADAU, April 1998. Available via WWW at URL ftp://ftp.unige.ch/pub/doc/math/sti_/radau.f
  6. [6]
    Iavernaro, F., Mazzia, F.: Block-Boundary Value Methods for the solution of Ordinary Differential Equations, SIAM J. Sci. Comput. (to appear)Google Scholar
  7. [7]
    Iavernaro, F., Mazzia, F.: Solving ordinary differential equations by Generalized Adams Methods: properties and implementation techniques, Appl. Num. Math. 28 2-4 (1998) 107–126Google Scholar
  8. [8]
    Iavernaro, F., Mazzia, F.: F GAM August 1997. Available via WWW at URL http://www.dm.uniba.it/~mazzia/ode/readme.html.
  9. [9]
    Lioen, W.M., de Swart, J.J.B., van der Veen, W.A.: Test Set for IVP Solvers, CWI, Department of Mathematics, Amsterdam, Report NM-R9615, (1996)Google Scholar
  10. [10]
    Message Passing Interface Forum. MPI: A Message-Passing Interface Standard, (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Felice Iavernaro
    • 1
  • Francesca Mazzia
    • 1
  1. 1.Dipartimento di MatematicaUniversità di BariBariItaly

Personalised recommendations