Advertisement

Using Pentangular Factorizations for the Reduction to Banded Form

  • B. Großer
  • B. Lang
Conference paper
  • 81 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1685)

Abstract

Most methods for computing the singular value decomposition (SVD) first bidiagonalize the matrix. The ScaLAPACK implementation of the blocked reduction of a general dense matrix to bidiagonal form performs about one half of the operations with BLAS3. If we subdivide the task into two stages densebanded and bandedbidiagonal, we can increase the portion of matrix-matrix operations and expect higher performance. We give an overview of different techniques for the first stage.

This note summarizes the results of [9, 10].

Keywords

Linear algebra Singular value decomposition Bidiagonal reduction Parallel BLAS 

References

  1. [1]
    M.W. Berry, J.J. Dongarra, and Y. Kim. A parallel algorithm for the reduction of a nonsymmetric matrix to block upper-Hessenberg form. Parallel Comput., 21(8):1184–1200, August 1995.Google Scholar
  2. [2]
    C. Bischof and C. Van Loan. The WY representation for products of Householder matrices. SIAM J. Sci. Stat. Comput., 8(1):s2–s13, January 1987.Google Scholar
  3. [3]
    J. Choi, J. Demmel, I. Dhillon, J. Dongarra, S. Ostrouchov, A. Petitet, K. Stanley, D. Walker, and R.C. Whaley. ScaLAPACK: A portable linear algebra library for distributed memory computers design issues and performance. Computer Phys.Comm., 97:1–15, 1996.Google Scholar
  4. [4]
    J. Choi, J. Dongarra, S. Ostrouchov, A. Petitet, D. Walker, and R.C. Whaley. A proposal for a set of parallel basic linear algebra subprograms. In J. Dongarra, K. Masden, and J. Waśniewski, editors, Applied Parallel Computing, pages 107–114. Springer Verlag, 1995.Google Scholar
  5. [5]
    J. Choi, J.J. Dongarra, L.S. Ostrouchov, A.P. Petitet, D.W. Walker, and R.C. Whaley. The design and implementation of the ScaLAPACK LU, QR, and Cholesky factorization routines. Scientific Programming, 5:173–184, 1996.Google Scholar
  6. [6]
    J. Choi, J.J. Dongarra, and D.W. Walker. The design of a parallel dense linear algebra software library: Reduction to Hessenberg, tridiagonal, and bidiagonal form. Numer. Alg., 10:379–399, 1995.Google Scholar
  7. [7]
    J.J. Dongarra, J. Du Croz, S. Hammarling, and I. Duff. A set of level 3 basic linear algebra subprograms. ACM Trans. Math. Soft., 16(1):1–17, March 1990.Google Scholar
  8. [8]
    J.J. Dongarra and R.C. Whaley. LAPACK Working Note 94: A user’s guide to the BLACS v1.0. Technical Report CS-95-281, University of Tennessee at Knoxville, March 1995.Google Scholar
  9. [9]
    B. Großer. Parallele zweistu_ge Verfahren zur Reduktion auf Bidiagonalgestalt. Diplomarbeit, Fachbereich Mathematik, Bergische Universität GH Wuppertal, 1997.Google Scholar
  10. [10]
    B. Großer and B. Lang. Efficient parallel reduction to bidiagonal form. submitted to Parallel Comput.Google Scholar
  11. [11]
    B. Lang. Parallel reduction of banded matrices to bidiagonal form. Parallel Comput., 22:1–18, January 1996.Google Scholar
  12. [12]
    R. Schreiber and C. Van Loan. A storage-efficient WY representation for products of Householder transformations. SIAM J. Sci. Stat. Comput., 10(1):53–57, January 1989Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • B. Großer
    • 1
  • B. Lang
    • 2
  1. 1.Department of MathematicsUniversity of WuppertalWuppertalGermany
  2. 2.Computing CenterAachen University of TechnologyAachenGermany

Personalised recommendations