Statistical Learning of Multi-view Face Detection

  • Stan Z. Li
  • Long Zhu
  • ZhenQiu Zhang
  • Andrew Blake
  • HongJiang Zhang
  • Harry Shum
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2353)


A new boosting algorithm, called FloatBoost, is proposed to overcome the monotonicity problem of the sequential AdaBoost learning. AdaBoost [1,2] is a sequential forward search procedure using the greedy selection strategy. The premise offered by the sequential procedure can be broken-down when the monotonicity assumption, i.e. that when adding a new feature to the current set, the value of the performance criterion does not decrease, is violated. FloatBoost incorporates the idea of Floating Search [3] into AdaBoost to solve the non-monotonicity problem encountered in the sequential search of AdaBoost.

We then present a system which learns to detect multi-view faces using FloatBoost. The system uses a coarse-to-fine, simple-to-complex architecture called detector-pyramid. FloatBoost learns the component detectors in the pyramid and yields similar or higher classification accuracy than AdaBoost with a smaller number of weak classifiers. This work leads to the first real-time multi-view face detection system in the world. It runs at 200 ms per image of size 320×240 pixels on a Pentium-III CPU of 700 MHz. A live demo will be shown at the conference.


Support Vector Machine Feature Selection Statistical Learn Face Detection Heuristic Assumption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Freund, Y., Schapire, R.: “A decision-theoretic generalization of on-line learning and an application to boosting”. Journal of Computer and System Sciences 55 (1997) 119–139MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Schapire, R.E., Singer, Y.: “Improved boosting algorithms using confidence-rated predictions”. In: Proceedings of the Eleventh Annual Conference on Computational Learning Theory. (1998) 80–91Google Scholar
  3. 3.
    Pudil, P., Novovicova, J., Kittler, J.: Floating search methods in feature selection. Pattern Recognition Letters 15 (1994) 1119–1125CrossRefGoogle Scholar
  4. 4.
    Schapire, R., Freund, Y., Bartlett, P., Lee, W.S.: “Boosting the margin: A new explanation for the effectiveness of voting methods”. The Annals of Statistics 26 (1998) 1651–1686MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Stearns, S.D.: “On selecting features for pattern classifiers”. In: Proceedings of International Conference Pattern Recognition. (1976) 71–75Google Scholar
  6. 6.
    Kittler, J.: “Feature set search algorithm”. In Chen, C.H., ed.: Pattern Recognition in Practice. NorthHolland, Sijthoff and Noordhoof (1980) 41–60Google Scholar
  7. 7.
    Jain, A., Zongker, D.: Feature selection: evaluation, application, and samll sample performance. IEEE Trans. on PAMI 19 (1997) 153–158CrossRefGoogle Scholar
  8. 8.
    Somol, P., Pudil, P., Novoviova, J., Paclik, P.: “Adaptive floating search methods in feature selection”. Pattern Recognition Letters 20 (1999) 1157–1163CrossRefGoogle Scholar
  9. 9.
    Rowley, H.A., Baluja, S., Kanade, T.: “Neural network-based face detection”. IEEE Transactions on Pattern Analysis and Machine Intelligence 20 (1998) 23–28CrossRefGoogle Scholar
  10. 10.
    Sung, K.K., Poggio, T.: “Example-based learning for view-based human face detection”. IEEE Transactions on Pattern Analysis and Machine Intelligence 20 (1998) 39–51CrossRefGoogle Scholar
  11. 11.
    Osuna, E., Freund, R., Girosi, F.: “Training support vector machines: An application to face detection”. In: CVPR. (1997) 130–136Google Scholar
  12. 12.
    Roth, D., Yang, M., Ahuja, N.: “A snow-based face detector”. In: Proceedings of Neural Information Processing Systems. (2000)Google Scholar
  13. 13.
    Bichsel, M., Pentland, A.P.: “Human face recognition and the face image set’s topology”. CVGIP: Image Understanding 59 (1994) 254–261CrossRefGoogle Scholar
  14. 14.
    Simard, P.Y., Cun, Y.A.L., Denker, J.S., Victorri, B.: “Transformation invariance in pattern recognition-tangent distance and tangent propagation”. In Orr, G.B., Muller, K.R., eds.: Neural Networks: Tricks of the Trade, Springer (1998)Google Scholar
  15. 15.
    Viola, P., Jones, M.: “Robust real time object detection”. In: IEEE ICCV Workshop on Statistical and Computational Theories of Vision, Vancouver, Canada (2001)Google Scholar
  16. 16.
    Kuchinsky, A., Pering, C., Creech, M.L., Freeze, D., Serra, B., Gwizdka, J.: ”FotoFile: A consumer multimedia organization and retrieval system”. In: Proceedings of ACM SIG CffI’99 Conference, Pittsburg (1999)Google Scholar
  17. 17.
    Pentland, A.P., Moghaddam, B., Starner, T.: “View-based and modular eigenspaces for face recognition”. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. (1994) 84–91Google Scholar
  18. 18.
    Feraud, J., Bernier, O., Collobert, M.: “A fast and accurate face detector for indexation of face images”. In: Proc. Fourth IEEE Int. Conf on Automatic Face and Gesture Recognition, Grenoble (2000)Google Scholar
  19. 19.
    Wiskott, L., Fellous, J., Kruger, N., malsburg, C.V.: ”face recognition by elastic bunch graph matching”. IEEE Transactions on Pattern Analysis and Machine Intelligence 19 (1997) 775–779CrossRefGoogle Scholar
  20. 20.
    Gong, S., McKenna, S., Collins, J.: “An investigation into face pose distribution”. In: Proc. IEEE International Conference on Face and Gesture Recognition, Vermont (1996)Google Scholar
  21. 21.
    Ng, J., Gong, S.: “performing multi-view face detection and pose estimation using a composite support vector machine across the view sphere”. In: Proc. IEEE International Workshop on Recognition, Analysis, and Tracking of Faces and Gestures in Real-Time Systems, Corfu, Greece (1999) 14-21Google Scholar
  22. 22.
    Li, Y.M., Gong, S.G., Liddell, H.: “support vector regression and classification based multi-view face detection and recognition”. In: IEEE Int. Conf. Oo Face & Gesture Recognition, France (2000) 300–305Google Scholar
  23. 23.
    Huang, J., Shao, X., Wechsler, H.: “Face pose discrimination using support vector machines (SVM)”. In: Proceedings of International Conference Pattern Recognition, Brisbane, Queensland, Australia (1998)Google Scholar
  24. 24.
    Schneiderman, H., Kanade, T.: “A statistical method for 3d object detection applied to faces and cars”. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. (2000)Google Scholar
  25. 25.
    Friedman, J., Hastie, T., Tibshirani, R.: “Additive logistic regression: a statistical view of boosting”. Technical report, Department of Statistics, Sequoia Hall, Stanford Univerity (1998)Google Scholar
  26. 26.
    Amit, Y.,, Geman, D., Wilder, K.: “Joint induction of shape features and tree classifiers”. IEEE Transactions on Pattern Analysis and Machine Intelligence 19 (1997) 1300–1305CrossRefGoogle Scholar
  27. 27.
    Fleuret, F., Geman, D.: “Coarse-to-fine face detection”. International Journal of Computer Vision 20 (2001) 1157–1163Google Scholar
  28. 28.
    Papageorgiou, C.P., Oren, M., Poggio, T.: “A general framework for object detection”. In: Proceedings of IEEE International Conference on Computer Vision, Bombay, India (1998) 555–562Google Scholar
  29. 29.
    Simard, P.Y., Bottou, L., Haffner, P., Cun, Y.L.: “Boxlets: a fast convolution algorithm for signal processing and neural networks”. In Kearns, M., Solla, S., Cohn, D., eds.: Advances in Neural Information Processing Systems. Volume 11., MIT Press (1998) 571–577Google Scholar
  30. 30.
    Crow, F.: “Summed-area tables for texture mapping”. In: SIGGGRAPH. Volume 18(3). (1984) 207–212CrossRefGoogle Scholar
  31. 31.
    Erik Hjelmas, B.K.L.: “Face detection: A survey”. Computer Vision and Image Understanding 3 (2001)Google Scholar
  32. 32.
    Fan, W., Stolfo, S., Zhang, J.: “The application of adaboost for distributed, scalable and on-line learning”. In: Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, California (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Stan Z. Li
    • 1
  • Long Zhu
    • 1
  • ZhenQiu Zhang
    • 2
  • Andrew Blake
    • 3
  • HongJiang Zhang
    • 1
  • Harry Shum
    • 1
  1. 1.Microsoft Research AisaBeijingChina
  2. 2.Institute of AutomationChinese Academy SinicaBeijingChina
  3. 3.Microsoft Research CambridgeCambradgeUK

Personalised recommendations