Finding the Largest Unambiguous Component of Stereo Matching
Abstract
Stereo matching is an ill-posed problem for at least two principal reasons: (1) because of the random nature of match similarity measure and (2) because of structural ambiguity due to repetitive patterns. Both ambiguities require the problem to be posed in the regularization framework. Continuity is a natural choice for a prior model. But this model may fail in low signal-to-noise ratio regions. The resulting artefacts may then completely spoil the subsequent visual task.
A question arises whether one could (1) find the unambiguous component of matching and, simultaneously, (2) identify the ambiguous component of the solution and then, optionally, (3) regularize the task for the ambiguous component only. Some authors have already taken this view. In this paper we define a new stability property which is a condition a set of matches must satisfy to be considered unambiguous at a given confidence level. It turns out that for a given matching problem this set is (1) unique and (2) it is already a matching. We give a fast algorithm that is able to find the largest stable matching. The algorithm is then used to show on real scenes that the unambiguous component is quite dense (10–80%) and error-free (total error rate of 0.3–1.4%), both depending on the confidence level chosen.
Keywords
Inhibition Zone Match Problem Stable Match Stereo Match Maximum CardinalityReferences
- 1.Julesz, B.: Towards the automation of binocular depth perception (AUTOMAP-1). In: IFIPS Congress, Munich (1962)Google Scholar
- 2.Kutulakos, K.N., Seitz, S.M.: A theory of shape by shape carving. IJCV 38 (2000) 199–218zbMATHCrossRefGoogle Scholar
- 3.Baker, S., Sim, T., Kanade, T.: A characterization of inherent stereo ambiguities. In: Proc ICCV. (2001) 428–435Google Scholar
- 4.Schlesinger, M.I.: Ambiguity in stereopsis. Personal communication (1998)Google Scholar
- 5.Šára, R.: Failure analysis of stable matchings. Research report (In preparation)Google Scholar
- 6.Stewart, C.V., Dyer, C.R.: The trinocular general support algorithm: A three-camera stereo algorithm for overcoming binocular matching errors. In: Proc ICCV. (1988) 134–138Google Scholar
- 7.Satoh, K., Ohta, Y.: Occlusion detectable stereo using a camera matrix. In: Proc ACCV. (1995) 331–335Google Scholar
- 8.Marr, D.: A note on the computation of binocular disparity in a symbolic, low-level visual processor. A.I. Memo 327, AI Lab, MIT (1974)Google Scholar
- 9.Pollard, S.B., Mayhew, J.E.W., Frisby, J.P.: PMF: A stereo correspondence algorithm using a disparity gradient limit. Perception 14 (1985) 449–470CrossRefGoogle Scholar
- 10.Zitnick, C.L., Kanade, T.: A cooperative algorithm for stereo matching and occlusion detection. IEEE Trans PAMI 22 (2000) 675–684Google Scholar
- 11.Belhumeur, P.N.: A Bayesian approach to binocular stereopsis. IJCV 19 (1996) 237–260CrossRefGoogle Scholar
- 12.Bobick, A.F., Intille, S.S.: Large occlusion stereo. IJCV 33 (1999) 181–200CrossRefGoogle Scholar
- 13.Robert, L., Deriche, R.: Dense depth map reconstruction: A minimization and regularization approach which preserves discontinuities. In: Proc ICIP. (1992) 123–127Google Scholar
- 14.Barnard, S.T.: Stochastic stereo matching over scale. IJCV 3 (1989) 17–32CrossRefGoogle Scholar
- 15.Scharstein, D., Szeliski, R.: Stereo matching with nonlinear diffusion. IJCV 28 (1998) 155–174CrossRefGoogle Scholar
- 16.Boykov, Y., Veksler, O., Zabih, R.: Disparity component matching for visual correspondence. In: Proc Conf CVPR. (1997) 470–475Google Scholar
- 17.Ishikawa, H., Geiger, D.: Occlusions, discontinuities, and epipolar lines in stereo. In: ECCV. (1998) 232–248Google Scholar
- 18.Roy, S., Cox, I.J.: A maximum-flow formulation of the n-camera stereo correspondence problem. In: Proc ICCV. (1998) 492–499Google Scholar
- 19.Kolmogorov, V., Zabih, R.: Computing visual correspondence with occlusions using graph cuts. In: Proc ICCV. (2001) 508–515Google Scholar
- 20.March, R.: Computation of stereo disparity using regularization. Pattern Recognition Letters 8 (1988) 181–187CrossRefGoogle Scholar
- 21.March, R.: A regularization model for stereo vision with controlled continuity. Pattern Recognition Letters 10 (1989) 259–263zbMATHCrossRefGoogle Scholar
- 22.Jung, D.Y., Oh, J.H., Lee, S.C., Lee, C.H., Nam, K.G.: Stereo matching by discontinuity-preserving regularization. J of Elect Eng and Inf Sci 4 (1999) 452–8Google Scholar
- 23.Manduchi, R.; Tomasi, C.: Distinctiveness maps for image matching. In: Proc ICIAP. (1999) 26–31Google Scholar
- 24.Šára, R.: Sigma-delta stable matching for computational stereopsis. Research Report CTU-CMP-2001-25, Center for Machine Perception, Czech Technical University (2001) [ftp://cmp.felk.cvut.cz/pub/cmp/articles/sara/Sara-TR-2001-25.pdf].
- 25.Krol, J.D., van der Grind, W.A.: Rehabilitation of a classical notion of Panum’s fusional area. Perception 11 (1982) 615–619CrossRefGoogle Scholar
- 26.Yuille, A.L., Poggio, T.: A generalized ordering constraint for stereo correspondence. A.I. Memo 777, AI Lab, MIT (1984)Google Scholar
- 27.Šára, R.: A fast algorithm for confidently stable matching. Research Report CTU-CMP-2002-03, Center for Machine Perception, Czech Technical University (2002) [ftp://cmp.felk.cvut.cz/pub/cmp/articles/sara/Sara-TR-2002-03.pdf].
- 28.Moravec, H.P.: Towards automatic visual obstacle avoidance. In: Proc IJCAI. (1977) 584Google Scholar
- 29.Mandelbaum, R., Kamberova, G., Mintz, M.: Stereo depth estimation: a confidence interval approach. In: Proc ICCV. (1998) 503–509Google Scholar
- 30.Cox, I.J., Hingorani, S., Maggs, B.M., Rao, S.B.: Stereo without disparity gradient smoothing: a Bayesian sensor fusion solution. In: Proc BMVC. (1992) 337–346Google Scholar
- 31.Scheibe, K., Korsitzky, H., Reulke, R., Scheele, M., Solbrig, M.: EYESCAN-a high resolution digital panoramic camera. In: Int Wkshp Robot Vision, Auckland (2001) 77–83Google Scholar
- 32.Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Technical Report MSR-TR-2001-81, Microsoft Research, Redmont, WA (2001) To appear in IJCV.Google Scholar