Advertisement

Dense Motion Analysis in Fluid Imagery

  • T. Corpetti
  • É. Mémin
  • P. Pérez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2350)

Abstract

Analyzing fluid motion is essential in number of domains and can rarely be handled using generic computer vision techniques. In this particular application context, we address two distinct problems. First we describe a dedicated dense motion estimator. The approach relies on constraints issuing from fluid motion properties and allows us to recover dense motion fields of good quality. Secondly, we address the problem of analyzing such velocity fields. We present a kind of motion-based segmentation relying on an analytic representation of the motion field that permits to extract important quantities such as singularities, stream-functions or velocity potentials. The proposed method has the advantage to be robust, simple, and fast.

Keywords

Singular Point Motion Estimation Velocity Potential Bhattacharyya Distance Dense Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A. Amini. A scalar function formulation for optical flow. In Proc. Europ. Conf. Computer Vision, pages 125–131, 1994.Google Scholar
  2. 2.
    V.I. Arnold. Ordinary differential equations. MIT Press, 1990.Google Scholar
  3. 3.
    M. Basseville. Distance measure for signal processing and pattern recognition. Signal Processing, (18):349–369, 1989.CrossRefMathSciNetGoogle Scholar
  4. 4.
    D. Béréziat, I. Herlin, and L. Younes. A generalized optical flow constraint and its physical interpretation. In Proc. Conf. Comp. Vision Pattern Rec., volume 2, pages 487–492, Hilton Head Island, South Carolina, USA, 2000.Google Scholar
  5. 5.
    M. Black and P. Anandan. The robust estimation of multiple motions: Parametric and piecewise-smooth flow fields. Computer Vision and Image Understanding, 63(1):75–104, 1996.CrossRefGoogle Scholar
  6. 6.
    A. J. Chorin. Vorticity and turbulence. Applied Math. Sciences 103, Springer Verlag.Google Scholar
  7. 7.
    T. Corpetti, E. Mémin, and P. Pérez. Dense estimation of fluide flows. IEEE Trans on Pattern Analysis and Machine Intelligence, 24(3), March 2002.Google Scholar
  8. 8.
    T. Corpetti, E. Mémin, and P. Pérez. Extraction of singular points from dense motion fields: an analytic approach. Journal of Math. Imag. and Vision, 2002. Accepted under minor revisions.Google Scholar
  9. 9.
    S. Das Peddada and R. McDevitt. Least average residual algorithm (LARA) for tracking the motion of artic sea ice. IEEE trans. on Geosciences and Remote sensing, 34(4):915–926, 1996.CrossRefGoogle Scholar
  10. 10.
    J.M. Fitzpatrick. The existence of geometrical density-image transformations corresponding to object motion. Comput. Vision, Graphics, Image Proc., 44(2):155–174, 1988.CrossRefMathSciNetGoogle Scholar
  11. 11.
    R.M. Ford, R. Strickland, and B. Thomas. Image models for 2-d flow visualization and compression. Graph. Mod. Image Proc., 56(1):75–93, 1994.CrossRefGoogle Scholar
  12. 12.
    S. Gupta and J. Prince. Stochastic models for div-curl optical flow methods. Signal Proc. Letters, 3(2):32–34, 1996.CrossRefGoogle Scholar
  13. 13.
    B. Horn and B. Schunck. Determining optical flow. Artificial Intelligence, 17:185–203, 1981.CrossRefGoogle Scholar
  14. 14.
    P. Kornprobst, R. Deriche, and G. Aubert. Image sequence analysis via partial differential equations. Journal of Mathematical Imaging and Vision, 11(1):5–26, September 1999.Google Scholar
  15. 15.
    R. Larsen, K. Conradsen, and B.K. Ersboll. Estimation of dense image flow fields in fluids. IEEE trans. on Geoscience and Remote sensing, 36(1):256–264, 1998.CrossRefGoogle Scholar
  16. 16.
    E. Mémin and P. Pérez. Dense estimation and object-based segmentation of the optical flow with robust techniques. IEEE Trans. Image Processing, 7(5):703–719, 1998.CrossRefGoogle Scholar
  17. 17.
    E. Mémin and P. Pérez. Hierarchical estimation and segmentation of dense motion fields. Int. J. Computer Vision, 46(2):129–155, February 2002.Google Scholar
  18. 18.
    A. Nomura, H. Miike, and K. Koga. Field theory approach for determining optical flow. Pattern Recognition Letters, 12(3):183–190, 1991.CrossRefGoogle Scholar
  19. 19.
    A. Ottenbacher, M. Tomasini, K. Holmund, and J. Schmetz. Low-level cloud motion winds from Meteosat high-resolution visible imagery. Weather and Forecasting, 12(1):175–184, 1997.CrossRefGoogle Scholar
  20. 20.
    B.G. Schunk. The motion constraint equation for optical flow. In Proc. Int. Conf. Pattern Recognition, pages 20–22, Montreal, 1984.Google Scholar
  21. 21.
    S.M. Song and R.M. Leahy. Computation of 3D velocity fields from 3D cine and CT images of human heart. IEEE trans. on medical imaging, 10(3):295–306, 1991.CrossRefGoogle Scholar
  22. 22.
    D. Suter. Motion estimation and vector splines. In Proc. Conf. Comp. Vision Pattern Rec., pages 939–942, Seattle, USA, June 1994.Google Scholar
  23. 23.
    R. Wildes, M. Amabile, A.M. Lanzillotto, and T.S. Leu. Physically based fluid flow recovery from image sequences. In Proc. Conf. Comp. Vision Pattern Rec. pages 969–975, 1997.Google Scholar
  24. 24.
    L. Zhou, C. Kambhamettu, and D. Goldgof. Fluid structure and motion analysis from multi-spectrum 2D cloud images sequences. In Proc. Conf. Comp. Vision Pattern Rec., volume 2, pages 744–751, Hilton Head Island, South Carolina, USA, 2000.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • T. Corpetti
    • 1
    • 2
  • É. Mémin
    • 1
    • 2
  • P. Pérez
    • 1
    • 2
  1. 1.IRISA/Université de Rennes IRennes CedexFrance
  2. 2.Microsoft Research CenterCambridgeUK

Personalised recommendations