Advertisement

Least Committment Graph Matching by Evolutionary Optimisation

  • Richard Myers
  • Edwin R. Hancock
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1842)

Abstract

This paper presents a method of matching ambiguous feature sets extracted from images. The method is based on Wilson and Hancock’s Bayesian matching framework [1], which is extended to handle the case where the feature measurements are ambiguous. A multimodal evolutionary optimisation framework is proposed, which is capable of simultaneously producing several good alternative solutions. Unlike other multimodal genetic algorithms, the one reported here requires no extra parameters: solution yields are maximised by removing bias in the selection step, while optimisation performance is maintained by a local search step. An experimental study demonstrates the effectiveness of the new approach on synthetic and real data. The framework is in principle applicable to any multimodal optimisation problem where local search performs well.

Keywords

Genetic Algorithm Machine Intelligence Evolutionary Optimisation Hybrid Genetic Algorithm Graph Match 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    R. C. Wilson and E. R. Hancock. Structural matching by discrete relaxation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19:634–648, 1997.CrossRefGoogle Scholar
  2. 2.
    H. G. Barrow and R. J. Popplestone. Relational descriptions in picture processing. In B. Meltzer and D. Michie, editors, Machine Intelligence, volume 6. Edinburgh University Press, 1971.Google Scholar
  3. 3.
    M. Minsky. A framework for representing knowledge. In P.H. Winston, editor, The Psychology of Computer Vision. McGraw-Hill, 1975.Google Scholar
  4. 4.
    J. Koenderink and A. van Doorn. The internal representation of solid shape with respect to vision. Biological Cybernetics, 32:211–216, 1979.zbMATHCrossRefGoogle Scholar
  5. 5.
    S. J. Dickinson, A. P. Pentland, and A. Rosenfeld. 3-D shape recovery using distributed aspect matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14:174–198, 1992.CrossRefGoogle Scholar
  6. 6.
    R. Horaud and T. Skordas. Stereo correspondence through feature grouping and maximal cliques. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11:1168–1180, 1989.CrossRefGoogle Scholar
  7. 7.
    A. C. M. Dumay, R. J. van der Geest, J. J. Gerbrands, E. Jansen, and J. H. C. Reiber. Consistent inexact graph matching applied to labeling coronary segments in arteriograms. In Proceedings of the 11th International Conference on Pattern Recognition, volume C, pages 439–442, 1992.Google Scholar
  8. 8.
    A. Sanfeliu and K. S. Fu. A distance measure between attributed relational graphs for pattern recognition. IEEE Transactions on Systems, Man and Cybernetics, 13:353–362, 1983.zbMATHGoogle Scholar
  9. 9.
    L. G. Shaprio and R. M. Haralick. A metric for comparing relational descriptions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 7:90–94, 1985.Google Scholar
  10. 10.
    A. K. C. Wong and M. You. Entropy and distance of random graphs with application to structural pattern recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 7:599–609, 1985.zbMATHGoogle Scholar
  11. 11.
    J. Liang, H. I. Christensen, and F. V. Jensen. Qualitative recognition using Bayesian reasoning. In E. S. Gelsema and L. S. Kanal, editors, Pattern Recognition in Practice IV, pages 255–266, 1994.Google Scholar
  12. 12.
    K. W. Boyer and A. C. Kak. Structural stereopsis for 3-D vision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 10:144–166, 1988.CrossRefGoogle Scholar
  13. 13.
    J. Kittler, W. J. Christmas, and M. Petrou. Probabilistic relaxation for matching problems in computer vision. In Proceedings of the 4th IEEE International Conference on Computer Vision, pages 666–673, 1993.Google Scholar
  14. 14.
    R. C. Wilson and E. R. Hancock. A Bayesian compatibility model for graph matching. Pattern Recognition Letters, 17:263–276, 1996.CrossRefGoogle Scholar
  15. 15.
    R. C. Wilson and E. R. Hancock. Graph matching by discrete relaxation. In E. S. Gelsema and L. N. Kanal, editors, Pattern Recognition in Practice, volume 4, pages 165–176. Elsevier, 1994.Google Scholar
  16. 16.
    A. D. J. Cross, R. C. Wilson, and E. R. Hancock. Inexact graph matching using genetic search. Pattern Recognition, 30:953–970, 1997.CrossRefGoogle Scholar
  17. 17.
    D. Beasley, D. R. Bull, and R. R. Martin. A sequential niche technique for multimodal function optimisation. Evolutionary Computation, 1:101–125, 1993.CrossRefGoogle Scholar
  18. 18.
    J. H. Holland. Adaptation in Natural and Artificial Systems. MIT Press, 1975.Google Scholar
  19. 19.
    D. Goldberg. Genetic Algorithms in Search, Optimisation and Machine Learning. Addison-Wesley, 1989.Google Scholar
  20. 20.
    D. E. Goldberg and J. Richardson. Genetic algorithms with sharing for multimodal function optimization. In Proceedings of the 2nd International Conference on Genetic Algorithms, pages 41–49, 1987.Google Scholar
  21. 21.
    W. Cedeño, V. R. Vemuri, and T. Slezak. Multiniche crowding in genetic algorithms and its application to the assembly of DNA restriction-fragments. Evolutionary Computation, 2:321–345, 1995.CrossRefGoogle Scholar
  22. 22.
    M. Gorges-Schleuter. ASPARAGOS: A parallel genetic algorithm for population genetics. In Parallelism, Learning, Evolution. Workshop on Evolutionary Models and Strategies, pages 407–418, 1991.Google Scholar
  23. 23.
    R. E. Smith, S. Forrest, and A. S. Perelson. Searching for diverse, cooperative populations with genetic algorithms. Evolutionary Computation, 1:127–149, 1993.CrossRefGoogle Scholar
  24. 24.
    R. Myers and E. R. Hancock. Genetic algorithms for ambiguous labelling problems. Lecture Notes in Computer Science (EMMCVPR 97), 1223:345–360, 1997. Extended version to appear in Pattern Recognition.Google Scholar
  25. 25.
    D. Marr. Vision. Freeman, 1982.Google Scholar
  26. 26.
    K. S. Fu. A step towards unification of syntactic and statistical pattern recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 5:200–205, 1983.zbMATHGoogle Scholar
  27. 27.
    E. R. Hancock and J. Kittler. Discrete relaxation. Pattern Recognition, 23:711–733, 1990.CrossRefGoogle Scholar
  28. 28.
    R. Myers, R. C. Wilson, and E. R. Hancock. Efficient relational matching with local edit distance. In Proceedings of the 14th International Conference on Pattern Recognition, pages 1711–1714, 1998.Google Scholar
  29. 29.
    V. Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals. Soviet Physics-Doklady, 10:707–710, 1966.MathSciNetGoogle Scholar
  30. 30.
    R. A. Hummel and S. W. Zucker. On the foundations of relaxation labeling processes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 5:267–287, 1983.zbMATHGoogle Scholar
  31. 31.
    O. D. Faugeras and M. Berthod. Improving consistency and reducing ambiguity in stochastic labeling: An optimisation approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 3:412–424, 1981.zbMATHCrossRefGoogle Scholar
  32. 32.
    G. Syswerda. Uniform crossover in genetic algorithms. In Proceedings of the 3rd International Conference on Genetic Algorithms, pages 2–9, 1989.Google Scholar
  33. 33.
    J. E. Baker. Reducing bias and inefficiency in the selection algorithm. In Proceedings of the 2nd International Conference on Genetic Algorithms, pages 14–21, 1987.Google Scholar
  34. 34.
    M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, 1996.Google Scholar
  35. 35.
    J. E. Baker. Adaptive selection methods for genetic algorithms. In J. J. Grefenstette, editor, Proceedings of the 1st International Conference on Genetic Algorithms, 1985.Google Scholar
  36. 36.
    D. E. Goldberg. A note on Boltzmann tournament selection for genetic algorithms and population-based simulated annealing. Complex Systems, 4:445–460, 1990.zbMATHGoogle Scholar
  37. 37.
    A. Prügel-Bennett and J. L. Shapiro. An analysis of genetic algorithms using statistical physics. Physical Review Letters, 72:1305–1309, 1994.CrossRefGoogle Scholar
  38. 38.
    I. Rechenberg. Evolutionsstrategie-Optimierung Technischer Systeme nach Prinzipien der biologischen Information. Fromman Verlag, 1973.Google Scholar
  39. 39.
    H-P. Schwefel. Numerical Optimization of Computer Models. Wiley, 1981.Google Scholar
  40. 40.
    G. Rudolph. Convergence analysis of canonical genetic algorithms. IEEE Transactions on Neural Networks, 5:96–101, 1994.CrossRefGoogle Scholar
  41. 41.
    L. J. Eshelman. The CHC adaptive search algorithm: How to have safe search when engaging in nontraditional genetic recombination. In G. J. E. Rawlins, editor, Foundations of Genetic Algorithms, volume 1, pages 265–283. Morgan Kaufmann, 1991.Google Scholar
  42. 42.
    J. R. Shewchuk. Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator. In Proceedings of the 1 st Workshop on Applied Computational Geometry, pages 124–133, 1996.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Richard Myers
    • 1
  • Edwin R. Hancock
    • 1
  1. 1.Department of Computer ScienceUniversity of YorkYorkUK

Personalised recommendations