Efficient Identity Based Signature Schemes Based on Pairings

  • Florian Hess
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2595)


We develop an efficient identity based signature scheme based on pairings whose security relies on the hardness of the Diffie-Hellman problem in the random oracle model. We describe how this scheme is obtained as a special version of a more general generic scheme which yields further new provably secure identity based signature schemes if pairings are used. The generic scheme also includes traditional public key signature schemes.We further discuss issues of key escrow and the distribution of keys to multiple trust authorities. The appendix contains a brief description of the relevant properties of supersingular elliptic curves and the Weil and Tate pairings.


Identity based signatures Weil pairing Tate pairing key escrow 


  1. 1.
    S. Blackburn, S. Blake-Wilson, M. Burmester and S. D. Galbraith. Shared Generation of Shared RSA Keys. University of Waterloo technical report, CORR 98-19 (1998).Google Scholar
  2. 2.
    D. Boneh and M. Franklin. Efficient Generation of Shared RSA Keys. In Advances in Cryptology-CRYPTO’ 97, Springer-Verlag LNCS 1294, 425–439, 1997.CrossRefGoogle Scholar
  3. 3.
    D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. In Advances in Cryptology-CRYPTO 2001, Springer-Verlag LNCS 2139, 213–229, 2001.CrossRefGoogle Scholar
  4. 4.
    D. Boneh, B. Lynn and H. Shacham. Short signatures from the Weil pairing. In Advances in Cryptology-ASIACRYPT 2001, Springer-Verlag LNCS 2248, 514–532, 2001.CrossRefGoogle Scholar
  5. 5.
    J. Cha and J. Cheon. An Identity-Based Signature from Gap Diffie-Hellman Groups IACR preprint server, submission 2002/018, 2002.Google Scholar
  6. 6.
    C. Cocks. Split knowledge generation of RSA parameters. In Cryptography and Coding, Springer-Verlag LNCS 1355, 89–95, 1997.Google Scholar
  7. 7.
    C. Cocks. An identity based encryption scheme based on quadratic residues. In Cryptography and Coding, Springer-Verlag LNCS 2260, 360–363. 2001.CrossRefGoogle Scholar
  8. 8.
    S. D. Galbraith. Supersingular curves in cryptography. In Advances in Cryptology-ASIACRYPT 2001, Springer-Verlag LNCS 2248, 495–513, 2001.CrossRefGoogle Scholar
  9. 9.
    A. Joux. A one round protocol for tripartite Diffie-Hellman. In Algorithmic Number Theory Symposium, ANTS-IV, Springer-Verlag LNCS 1838, 385–394, 2000.CrossRefGoogle Scholar
  10. 10.
    A. J. Menezes, T. Okamoto and S. Vanstone. Reducing elliptic curve logarithms to logarithms in a finite field. IEEE Trans. Info. Th., 39, 1639–1646, 1993.MathSciNetCrossRefGoogle Scholar
  11. 11.
    A. J. Menezes, P. C. Oorschot and S. Vanstone. Handbook of Applied Cryptography. CRC Press, 1996.Google Scholar
  12. 12.
    V. Miller. Short programs for functions on curves. Unpublished manuscript, 1986.Google Scholar
  13. 13.
    K. Nyberg and R. A. Rueppel. Message recovery for signature schemes based on the discrete logarithm problem. Designs, Codes and Cryptography, 7(1/2), 61–81, 1996.CrossRefGoogle Scholar
  14. 14.
    K. G. Paterson. ID-based signatures from pairings on elliptic curves IACR preprint server, submission 2002/003, 2002.Google Scholar
  15. 15.
    D. Pointcheval and J. Stern. Security arguments for digital signatures and blind signatures. Journal of Cryptology, 13, 361–396, 2000.CrossRefGoogle Scholar
  16. 16.
    K. Rubin and A. Silverberg. The best and worst of supersingular abelian varieties in cryptology. IACR preprint server, submission 2002/006, 2002.Google Scholar
  17. 17.
    R. Sakai, K. Ohgishi and M. Kasahara. Cryptosystems based on pairing. In SCIS 2000, 2000.Google Scholar
  18. 18.
    A. Shamir. Identity-based cryptosystems and signature schemes. In Advances in Cryptology-CRYPTO’ 84, Springer-Verlag LNCS 196, 47–53, 1984.Google Scholar
  19. 19.
    J. H. Silverman. The Arithmetic of Elliptic Curves. GTM 106, Springer-Verlag, 1986.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Florian Hess
    • 1
  1. 1.Dept. Computer ScienceUniversity of BristolBristolUK

Personalised recommendations