Skip to main content

The Almost-Forgotten Fifth Nucleotide in DNA: An Introduction

  • Chapter
DNA Methylation: Basic Mechanisms

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 301))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allfrey VG, Faulkner R, Mirsky AE (1964) Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci USA 51:786–794

    CAS  PubMed  Google Scholar 

  • Arber W, Dussoix D (1962) Host specificity of DNA produced by Escherichia coli. I. Host controlled modification of bacteriophage lambda. J Mol Biol 5:18–36

    CAS  PubMed  Google Scholar 

  • Arber W, Linn S (1969) DNA modification and restriction. Annu Rev Biochem 38:467–500

    Article  CAS  PubMed  Google Scholar 

  • Bestor TH (1998) The host defence function of genomic methylation patterns. Novartis Found Symp 241:187–199

    Google Scholar 

  • Chaillet JR, Bader DS, Leder P (1995) Regulation of genomic imprinting by gametic and embryonic processes. Genes Dev 9:1177–1187

    CAS  PubMed  Google Scholar 

  • Church GM, Gilbert W (1984) Genomic sequencing. Proc Natl Acad Sci USA 81:1991–1995

    CAS  PubMed  Google Scholar 

  • Clark SJ, Harrison J, Paul CL, Frommer M (1994) High sensitivity mapping of methylated cytosines. Nucleic Acids Res 22:2990–2997

    CAS  PubMed  Google Scholar 

  • Constantinides PG, Jones PA, Gevers W (1977) Functional striated muscle cells from non-myoblast precursors following 5-azacytidine treatment. Nature 267:364–366

    Article  CAS  PubMed  Google Scholar 

  • Craig JM (2005) Heterochromatin—many flavours, common themes. Bioessays 27:17–28

    Article  CAS  PubMed  Google Scholar 

  • Crystal RG, McElvaney NG, Rosenfeld MA, Chu CS, Mastrangeli A, Hay JG, Brody SL, Jaffe HA, Eissa NT, Danel C (1994) Administration of an adenovirus containing the human CFTR cDNA to the respiratory tract of individuals with cystic fibrosis. Nat Genet 8:42–51

    Article  CAS  PubMed  Google Scholar 

  • Danna K, Nathans D (1971) Specific cleavage of simian virus 40 DNA by restriction endonuclease of Hemophilus influenzae. Proc Natl Acad Sci USA 68:2913–2917

    CAS  PubMed  Google Scholar 

  • Dittrich B, Robinson WP, Knoblauch H, Buiting K, Schmidt K, Gillessen-Kaesbach G, Horsthemke B (1992) Molecular diagnosis of the Prader-Willi and Angelman syndromes by detection of parent-of-origin specific DNA methylation in 15q11–13. Hum Genet 90:313–315

    Article  CAS  PubMed  Google Scholar 

  • Doerfler W (1983) DNA methylation and gene activity. Annu Rev Biochem 52:93–124

    Article  CAS  PubMed  Google Scholar 

  • Doerfler W (1991) Patterns of DNA methylation—evolutionary vestiges of foreign DNA inactivation as a host defense mechanism—a proposal. Biol Chem Hoppe Seyler 372:557–564

    CAS  PubMed  Google Scholar 

  • Doerfler W (1995) The insertion of foreign DNA into mammalian genomes and its consequences: a concept in oncogenesis. Adv Cancer Res 66:313–344

    CAS  PubMed  Google Scholar 

  • Doerfler W (2000) Foreign DNA in mammalian systems. Wiley-VCH, Weinheim, New York, pp 1–181

    Google Scholar 

  • Drahovsky D, Lacko I, Wacker A (1976) Enzymatic DNA methylation during repair synthesis in non-proliferating human peripheral lymphocytes. Biochim Biophys Acta 447:139–143

    CAS  PubMed  Google Scholar 

  • Dussoix D, Arber W (1962) Host specificity of DNA produced by Escherichia coli. II. Control over acceptance of DNA from infecting phage lambda. Mol Biol 5:37–49

    CAS  Google Scholar 

  • Forsman A, Ushameckis D, Bindra A, Yun Z, Blomberg J (2003) Uptake of amplifiable fragments of retrotransposon DNA from the human alimentary tract. Mol Genet Genomics 270:362–368

    Article  CAS  PubMed  Google Scholar 

  • Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW, Molloy PL, Paul CL (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci USA 89:1827–1831

    CAS  PubMed  Google Scholar 

  • Günthert U, Schweiger M, Stupp M, Doerfler W (1976) DNA methylation in adenovirus, adenovirus-transformed cells, and host cells. Proc Natl Acad Sci USA 73:3923–3927

    PubMed  Google Scholar 

  • Guseinov VA, Vanyushin BF (1975) Content and localisation of 5-methylcytosine in DNA of healthy and wilt-infected cotton plants. Biochim Biophys Acta 395:229–238

    CAS  PubMed  Google Scholar 

  • Hacein-Bey-Abina S, von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P, Lim A, Osborne CS, Pawliuk R, Morillon E, et al (2003) LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302:415–419

    Article  CAS  PubMed  Google Scholar 

  • Heller H, Kämmer C, Wilgenbus P, Doerfler W (1995) Chromosomal insertion of foreign (adenovirus type 12, plasmid, or bacteriophage lambda) DNA is associated with enhanced methylation of cellular DNA segments. Proc Natl Acad Sci USA 92:5515–5519

    CAS  PubMed  Google Scholar 

  • Holliday R, Pugh JE (1975) DNA modification mechanisms and gene activity during development. Science 187:226–232

    CAS  PubMed  Google Scholar 

  • Hotchkiss RD (1948) The quantitative separation of purines, pyrimidines, and nucleosides by paper chromatography. J Biol Chem 175:315–332

    CAS  Google Scholar 

  • Huang LH, Wang R, Gama-Sosa MA, Shenoy S, Ehrlich M (1984) A protein from human placental nuclei binds preferentially to 5-methylcytosine-rich DNA. Nature 308:293–295

    Article  CAS  PubMed  Google Scholar 

  • Humpherys D, Eggan K, Akutsu H, Hochedlinger K, Rideout WM 3rd, Biniszkiewicz D, Yanagimachi R, Jaenisch R (2001) Epigenetic instability in ES cells and cloned mice. Science 293:95–97

    Article  CAS  PubMed  Google Scholar 

  • Jähner D, Stuhlman H, Stewart CL, Harbers K, Lohler J, Simon I, Jaenisch R (1982) De novo methylation and expression of retroviral genomes during mouse embryogenesis. Nature 298:623–628

    Article  PubMed  Google Scholar 

  • Johnson TB, Coghill RD (1925) Researches on pyrimidines. C111. The discovery of 5-methyl-cytosine in tuberculinic acid, the nucleic acid of the tubercle bacillus. J Am Chem Soc 47:2838–2844

    CAS  Google Scholar 

  • Jones PA (1985) Altering gene expression with 5-azacytidine. Cell 40:485–486

    Article  CAS  PubMed  Google Scholar 

  • Kelly TJ Jr, Smith HO (1970) A restriction enzyme from Hemophilus influenzae. II. J Mol Biol 51:393–409

    Article  CAS  PubMed  Google Scholar 

  • Lyko F, Ramsahoye BH, Jaenisch R (2000) DNA methylation in Drosophila melanogaster. Nature 408:538–540

    CAS  PubMed  Google Scholar 

  • McClelland M, Nelson M (1988) The effect of site-specific methylation on restriction endonucleases and DNA modification methyltransferases—a review. Gene 74:291–304

    CAS  PubMed  Google Scholar 

  • Meehan RR, Lewis JD, McKay S, Kleiner EL, Bird AP (1989) Identification of a mammalian protein that binds specifically to DNA containing methylated CpGs. Cell 58:499–507

    Article  CAS  PubMed  Google Scholar 

  • Müller K, Heller H, Doerfler W (2001) Foreign DNA integration: genome-wide perturbations of methylation and transcription in the recipient genomes. J Biol Chem 276:14271–14278

    PubMed  Google Scholar 

  • Razin A, Webb C, Szyf M, Yisraeli J, Rosenthal A, Naveh-Many T, Sciaky-Gallili N, Cedar H (1984) Variations in DNA methylation during mouse cell differentiation in vivo and in vitro. Proc Natl Acad Sci U S A 81:2275–2279

    CAS  PubMed  Google Scholar 

  • Remus R, Kämmer C, Heller H, Schmitz B, Schell G, Doerfler W (1999) Insertion of foreign DNA into an established mammalian genome can alter the methylation of cellular DNA sequences. J Virol 73:1010–1022

    CAS  PubMed  Google Scholar 

  • Rideout WM 3rd, Eggan K, Jaenisch R (2001) Nuclear cloning and epigenetic reprogramming of the genome. Science 293:1093–1098

    CAS  PubMed  Google Scholar 

  • Riggs AD (1975) X inactivation, differentiation, and DNA methylation. Cytogenet Cell Genet 14:9–25

    CAS  PubMed  Google Scholar 

  • Sapienza C (1995) Genome imprinting: an overview. Dev Genet 17:185–187

    Article  CAS  PubMed  Google Scholar 

  • Schubbert R, Renz D, Schmitz B, Doerfler W (1997) Foreign (M13) DNA ingested by mice reaches peripheral leukocytes, spleen and liver via the intestinal wall mucosa and can be covalently linked to mouse DNA. Proc Natl Acad Sci USA 94:961–966

    Article  CAS  PubMed  Google Scholar 

  • Stone R (1995) NIH to review gene therapy program. Science 268:627

    PubMed  Google Scholar 

  • Sutter D, Doerfler W (1980a) Methylation of integrated viral DNA sequences in hamster cells transformed by adenovirus 12. Cold Spring Harb Symp Quant Biol 44:565–568

    CAS  PubMed  Google Scholar 

  • Sutter D, Doerfler W (1980b) Methylation of integrated adenovirus type 12 DNA sequences in transformed cells is inversely correlated with viral gene expression. Proc Natl Acad Sci USA 77:253–256

    CAS  PubMed  Google Scholar 

  • Sutter D, Westphal M, Doerfler W (1978) Patterns of integration of viral DNA sequences in the genomes of adenovirus type 12-transformed hamster cells. Cell 14:569–585

    Article  CAS  PubMed  Google Scholar 

  • Vanyushin BF, Belozersky AN, Kokurina NA, Kadirova DX (1968) 5-Methylcytosine and 6-methylamino-purine in bacterial DNA. Nature 218:1066–1067

    CAS  PubMed  Google Scholar 

  • Waalwijk C, Flavell RA (1978) MspI, an isoschizomer of HpaII which cleaves both unmethylated and methylated HpaII sites. Nucleic Acids Res 5:3231–3236

    CAS  PubMed  Google Scholar 

  • Willis DB, Granoff A (1980) Frog virus 3 DNA is heavily methylated at CpG sequences. Virology 107:250–257

    Article  CAS  PubMed  Google Scholar 

  • Yoder JA, Walsh CP, Bestor TH (1997) Cytosine methylation and the ecology of intragenomic parasites. Trends Genet 13:335–340

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Doerfler, W. (2006). The Almost-Forgotten Fifth Nucleotide in DNA: An Introduction. In: Doerfler, W., Böhm, P. (eds) DNA Methylation: Basic Mechanisms. Current Topics in Microbiology and Immunology, vol 301. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31390-7_1

Download citation

Publish with us

Policies and ethics