Advertisement

Cell and Tissue Reactions

Chapter
  • 1.3k Downloads

Abstract

Similar types of tissue reaction result as a final common pathway from a wide array of different internal brain pathophysiological states and external insults. Since these cellular and tissue reactions are largely independent of the specific type of insults, they are, therefore, non-specific. The tissue reactions are to be differentiated according to their specific pathogenetic mechanisms, though these mechanisms as well as the phenomena are overlapping as demonstrated in Fig. 4.1; brain ischemia as a type of metabolic disturbance, edema, intracranial pressure, necrosis, herniation and inflammation are influencing themselves and are dependent on each other. Some will be mentioned again in later chapters as viewed from different forensic aspects; therefore, a certain redundancy is unavoidable. Immediately following, we offer a survey of the individual types of reaction and their fundamental pathophysiological principles and morphology.

Keywords

Major Histocompatibility Complex Brain Edema Central Nervous System Disease Axonal Injury Vasogenic Edema 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Bibliography

  1. Ironside JW, Pickard JO (2002) Raised intracranial pressure, oedema and hydrocephalus. In: Graham DI, Lantos PL (eds) Greenfield’s neuropathology, 7th edn, vol 1. Arnold, London, pp 193–231Google Scholar
  2. Keane RW, Hickey WF (eds) (1997) Immunology of the nervous system. Oxford University Press, New YorkGoogle Scholar
  3. Lee JC (1982) Anatomy of the blood-brain barrier under normal and pathological conditions In: Haymaker W, Adams RD (eds) Histology and histopathology of the nervous system, vol 1. CC Thomas, Springfield, Ill., pp 798–870Google Scholar
  4. Lindenberg R (1982) Tissue reactions in the gray matter of the central nervous system. In: Haymaker W, Adams RD (eds) Histology and histopathology of the nervous system. CC Thomas, Springfield, Ill., vol 1, pp 973–1275Google Scholar

References

  1. Abbott NJ, Revest PA, Romero IA (1992) Astrocyte-endothelial interaction: physiology and pathology. Neuropathol Appl Neurobiol 18:424–433PubMedGoogle Scholar
  2. Abe K (1999) Neurons.Necrotic vs apoptotic changes. In: Walz W (ed) Cerebral ischemia: molecular and cellular pathophysiology. Humana, Totowa, N.J., pp 217–232Google Scholar
  3. Adachi M, Feigin I (1966) Cerebral oedema and the water content of normal white matter. J Neurol Neurosurg Psychiatry 29:446–450PubMedGoogle Scholar
  4. Adams JH, Graham DI (1976) The relationship between ventricular fluid pressure and the neuropathology of raised intracranial pressure. Neuropathol Appl Neurobiol 2:323–332Google Scholar
  5. Adams JH, Graham DI, Muray LS, Scott G (1982) Diffuse axonal injury due to non-missile head injury in humans: an analysis of 45 cases. Ann Neurol 12:557–563PubMedCrossRefGoogle Scholar
  6. Adams RD, Fisher CM, Hakim S et al. (1965) Symptomatic occult hydrocephalus with “normal” cerebrospinal-fluid pressure: a treatable syndrome. N Engl J Med 273:117–126PubMedCrossRefGoogle Scholar
  7. Adler DE, Milhorat TH (2002) The tentorial notch: anatomical variation, morphometric analysis, and classification in 100 human autopsy cases. J Neurosurg 96:1103–1112PubMedGoogle Scholar
  8. Anthony DC, Ferguson B, Matyzak MK et al. (1997) Different matrix and metalloproteinase expression in cases of multiple sclerosis and stroke. Neuropathol Appl Neurobiol 23:406–415PubMedCrossRefGoogle Scholar
  9. Armstead WM, Kurth CD (1994) Different cerebral hemodynamic responses following fluid percussion brain injury in the newborn and juvenile pig. J Neurotrauma 11:487–497PubMedCrossRefGoogle Scholar
  10. Artru F, Philippon B, Berger M, Deleuze R (1976) Cerebral blood flow, cerebral metabolism and cerebrospinal fluid biochemistry in brain-injured patients after exposure to hyperbaric oxygen. Eur Neurol 14:351–364PubMedGoogle Scholar
  11. Astrup J, Siesjö BK, Symon L (1981) Thresholds in cerebral ischemia — the ischemic penumbra. Stroke 12:723–725PubMedGoogle Scholar
  12. Auer RN (2000) Pure hypoxic and ischemic insults. In: Research in legal medicine, vol 24. Schmidt-Römhild, Lübeck, pp 27–39Google Scholar
  13. Bakay L, Lee JC (1965) Cerebral edema. Thomas, Springfield, Ill.Google Scholar
  14. Bakay L, Lee JC (1968) Effects of hypoxia on the ultrastructure of the central nervous system. Brain 91:697–702PubMedGoogle Scholar
  15. Baron JL, Madri JA, Ruddle NH et al. (1993) Surface expression of α4 integrin by CD4 T-cells is required for their entry into brain parenchyma. J Exp Med 177:57–68PubMedCrossRefGoogle Scholar
  16. Barone FC (1999) Tumor necrosis factor a in stroke and neurotrauma. In: Ruffolo RR, Feuerstein GZ, Hunter AJ, Poste G, Metcalf BW (eds) Inflammatory cells and mediators in CNS diseases. Harwood Academic, New York, pp 327–348Google Scholar
  17. Bauer J, Rauschka H, Lassmann H (2001) Inflammation in the nervous system: the human perspective. Glia 36:235–243PubMedCrossRefGoogle Scholar
  18. Beal MF (1995) Aging, energy, and oxidative stress in neurodegenerative disease. Ann Neurol 38:357–366PubMedCrossRefGoogle Scholar
  19. Bell BA, Syman L, Branston NM (1985) CBF and time thresholds for the formation of ischemic cerebral edema, and effect of reperfusion in baboons. J Neurosurg 62:31–41PubMedGoogle Scholar
  20. Benveniste EN (1999) Cytokine expression in the nervous system. In: Keane RW, Hickey WF (eds) Immunology of the nervous system. Oxford University Press, New York, pp 419–459Google Scholar
  21. Bernardes-Silva M, Anthony DC, Issekutz AC, Perry VH (2001) Recruitment of neutrophils across the blood-brain barrier: the role of E-and P-selectins. J Cereb Blood Flow Metab 21:1115–1124PubMedGoogle Scholar
  22. Bevilaqua MP (1993) Endothelial-leukocyte adhesion molecules. Annu Rev Immunol 11:767–804Google Scholar
  23. Biagas KV, Grundl PD, Kochanek PM et al. (1996) Posttraumatic hyperemia in immature, mature, and aged rats: autoradiographic determination of cerebral blood flow. J Neurotrauma 13:189–200PubMedGoogle Scholar
  24. Blank WF, Kirshner HS (1977) The kinetics of extracellular potassium changes during hypoxia and anoxia in the cat cerebral cortex. Brain Res 123:113–124PubMedCrossRefGoogle Scholar
  25. Blinzinger K, Kreutzberg G (1968) Displacement of synaptic terminals from regenerating motor neurons by microglial cells. Z Zellforsch Mikrosk Anat 85:145–157PubMedCrossRefGoogle Scholar
  26. Blumbergs PC, Scott G, Manavis J et al. (1995) Topography of axonal injury as defined by amyloid precursor protein and the sector scoring method in mild and severe closed head injury. J Neurotrauma 12:565–571PubMedGoogle Scholar
  27. Bonecchi R, Bianchi G, Bordignon PP et al (1998) Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (Th1s) and Th2s. J Exp Med 187:129–134PubMedCrossRefGoogle Scholar
  28. Brightman MW, Reese TS (1969) Junctions between intimately apposed membranes in the vertebrate brain. J Cell Biol 40:648–677PubMedCrossRefGoogle Scholar
  29. Brodal P (1982) The central nervous system. Oxford University Press, New YorkGoogle Scholar
  30. Broman T (1949) The permeability of the cerebral vessels in normal and pathological conditions. Munksgaard, CopenhagenGoogle Scholar
  31. Broman T, Steinwall O (1967) Model of the blood-brain barrier system. In: Klatzo I, Seitel-Berger F (eds) Brain edema. Springer, Berlin Heidelberg New York, pp 360–384Google Scholar
  32. Brück W, Porada P, Poser S et al. (1995) Monocyte/macrophage differentiation in early multiple sclerosis lesions. Ann Neurol 38:788–796PubMedGoogle Scholar
  33. Cameron HA, McKay RD (1999) Restoring production of hippocampal neurons in old age. Nat Neurosci 2:894–897PubMedCrossRefGoogle Scholar
  34. Cammermeyer J (1961) The importance of avoiding “dark” neurons in experimental neuropathology. Acta Neuropathol 1:345–352CrossRefGoogle Scholar
  35. Cammermeyer J (1975) Histochemical phospholipid reaction in ischemic neurons as an indication of exposure to postmortem trauma. Exp Neurol 49:252–272PubMedCrossRefGoogle Scholar
  36. Campbell IL (1991) Cytokines in viral diseases. Curr Opin Immunol 3:486–491PubMedCrossRefGoogle Scholar
  37. Cervós-Navarro J, Ferszt R (1977) Beitrag zur Ätiopathogenese der Koagulationsnekrose im Gehirn. In: Schneider V (ed) Festschrift Walter Krauland zum 65. Geburtstag. Universitätsdruckerei, Berlin, pp 129–139Google Scholar
  38. Chan KH, Miller JD, Dearden NM (1992) Intracranial blood flow velocity after head injury: relationship to severity of injury, time, neurological status and outcome. J Neurol Neurosurg Psychiatry 55:787–791PubMedGoogle Scholar
  39. Chan PH (1999) The role of superoxide radicals in the pathogenesis of cerebral ischemic cell death. In: Ruffolo RR, Feuerstein GZ, Hunter AJ, Poste G, Metcalf BW (eds) Inflammatory cells and mediators in CNS diseases. Harwood Academic, New York, pp 157–168Google Scholar
  40. Chandler WF, Kindt GW (1976) Monitoring and control of intracranial pressure in non-traumatic encephalopathies. Surg Neurol 5:311–314PubMedGoogle Scholar
  41. Chao CC, Hu S, Peterson PK (1997) Glia-mediated neurotoxicity. In: Ramington JS, Peterson PK (eds) In defence of the brain: new concepts in pathogenesis, treatment and prevention of CNS infections. Blackwell Science, Malden, Mass., pp 74–89Google Scholar
  42. Chen MS, Huber AB, van der Haar ME et al. (2000) Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature 403:434–439PubMedGoogle Scholar
  43. Chirumamilla S, Sun D, Bullock MR, Colello RJ (2002) Traumatic brain injury induced cell proliferation in the adult mammalian central nervous system. J Neurotrauma 19:693–703PubMedCrossRefGoogle Scholar
  44. Choi DW, Rothman SM (1990) Role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Annu Rev Neurosci 13:171–182PubMedCrossRefGoogle Scholar
  45. Chu K, Kang D-W, Lee S-H, Kim M (2001) Diffusion-weighted MR findings in brainstem hypertensive encephalopathy: a possibility of cytotoxic edema. Eur Neurol 46:220–222PubMedCrossRefGoogle Scholar
  46. Clarke PGH (1998) Apoptosis versus necrosis. In: Koliatsos E, Ratou RR (eds) From cell death and diseases of the nervous system. Humana Press, Totowa, N.J., pp 3–25Google Scholar
  47. Connor RCR (1968) Heart damage associated with intracranial lesions. Br Med J 3:29–31PubMedGoogle Scholar
  48. Craig CG, D’sa R, Morshead CM et al. (1999) Migrational analysis of the constitutively proliferating subependyma population in adult mouse forebrain. Neuroscience 93:1197–1206PubMedCrossRefGoogle Scholar
  49. Cross AH, Manning PT, Keeling RM et al. (1998) Peroxinitrite formation within the central nervous system in active multiple sclerosis. J Neuroimmunol 88:45–56PubMedCrossRefGoogle Scholar
  50. Cserr HF, Knopf PM (1997) Cervical lymphatics, the blood-brain barrier, and immunoreactivity of the brain. In: Keane RW, Hickey WF (eds) Immunology of the nervous system. Oxford University Press, New York, pp 134–152Google Scholar
  51. Dalkara T, Ayata C, Moskowitz MA (1999) Constitutive nitric oxide synthase and ischemic/excitotoxic brain injury. In: Ruffolo RR, Feuerstein GZ, Hunter AJ, Poste G, Metcalf BW (eds) Inflammatory cells and mediators in CNS diseases. Harwood Academic, New York, pp 85–96Google Scholar
  52. Del Bigio MR (2004) Cellular damage and prevention in childhood hydrocephalus. Brain Pathol 14:317–324PubMedGoogle Scholar
  53. Dietrich WD (1999) Inflammatory factors regulating the bloodbrain barrier. In: Ruffolo RR, Feuerstein GZ, Hunter AJ, Poste G, Metcalf BW (eds) Inflammatory cells and mediators in CNS diseases. Harwood Academic, New York, pp 137–156Google Scholar
  54. D’Souza SD, Bonetti B, Balasingam V et al (1996) Multiple sclerosis. Fas signaling in oligodendrocyte death. J Exp Med 184:2361–2370Google Scholar
  55. Escolá J, Hager H (1963) Elektronenmikroskopische Befunde über die Kollagenfaserbildung im Rahmen mesenchymaler Organisationsvorgänge bei experimentellen Koagulationsnekrosen des Säugetiergehirns. Beitr Pathol Anat 128:25–38Google Scholar
  56. Esiri MM, Kennedy PG (1997) Viral diseases. In: Graham DI, Lantos PL (eds) Greenfield’s neuropathology, 6th edn, vol 2. Arnold, London, pp 3–62Google Scholar
  57. Euler M von, Janson AM, Larsen JO, Seiger Å et al (2002) Spontaneous axonal regeneration in rodent spinal cord alter ischemic injury. J Neuropathol Exp Neurol 61:64–75Google Scholar
  58. Fabry Z, Raine CS, Hart MN (1994) Nervous tissue as an immune compartment: the dialect of the immune response in the CNS. Immunol Today 15:218–224PubMedCrossRefGoogle Scholar
  59. Ferrer I, Planas AM (2003) Signaling of cell death and cell survival following focal cerebral ischemia: life and death struggle in the penumbra. J Neuropathol Exp Neurol 62:329–339PubMedGoogle Scholar
  60. Fierz W, Endler B, Reske K, Wekerle H, Fontana A (1985) Astrocytes as antigen presenting cells. I. Induction of Ia expression on astrocytes by T-cells via immune interferon and its effect on antigen presentation. J Immunol 134:3785–3793PubMedGoogle Scholar
  61. Fishman RA (1980) Cerebrospinal fluid in diseases of the nervous system. WB Saunders, Philadelphia, Pa.Google Scholar
  62. Fiskum G, Murphy AN, Beal MF (1999) Mitochondria in neurodegeneration: acute ischemia and chronic neurodegenerative diseases. J Cereb Blood Flow Metab 19:351–369PubMedGoogle Scholar
  63. Fontana A, Kristensen F, Dubs R et al (1982) Production of prostaglandin E and an interleukin-1 like factor by cultured astrocytes and F-6 glioma cells. J Immunol 129:2413–2419PubMedGoogle Scholar
  64. Fontana A, Fierz W, Wekerle H (1984) Astrocytes present myelin basic protein to encephalitogenic T cell lines. Nature 307:273–276PubMedCrossRefGoogle Scholar
  65. Frank E, Pulver M, De-Tribolet N (1986) Expression of class II major histocompatibility antigens on reactive astrocytes and endothelial cells within the gliosis surrounding metastases and abscesses. J Neuroimmunol 12:29–36PubMedCrossRefGoogle Scholar
  66. Frei K, Siepl C, Groscurth P et al (1987) Antigen presentation and tumor cytotoxicity by interferon-gamma treated microglial cells. Eur J Immunol 17:1271–1278PubMedGoogle Scholar
  67. Gage FH (1998) Stem cells of the central nervous system. Curr Opin Neurobiol 8:671–676PubMedCrossRefGoogle Scholar
  68. Garcia JH, Liu K-F, Ho K-L (1995) Neuronal necrosis after middle cerebral artery occlusion in Wistar rats progresses at different time intervals in the caudoputamen and the cortex. Stroke 26:636–643PubMedGoogle Scholar
  69. Garton HJL, Piatt JH (2004) Hydrocephalus. Pediatr Clin North Am 51:305–325PubMedCrossRefGoogle Scholar
  70. Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119:493–501PubMedCrossRefGoogle Scholar
  71. Gay FW, Dryre TJ, Dick GW, Esiri MM (1997) The application of multifactorial cluster analysis in the staging of plaques in early multiple sclerosis. Identification and characterization of primary demyelinating lesion. Brain 120:1461–1483PubMedCrossRefGoogle Scholar
  72. Gentleman SM, Nash AJ, Sweeting CJ et al. (1993) ß-Amyloid precursor protein (ß-APP) as a marker of axonal injury after head injury. Neurosci Lett 160:139–144PubMedCrossRefGoogle Scholar
  73. Gotoh K, Kikuchi H, Kataoka H et al (1998) Nitric oxide synthase immunoreactivity related to cold-induced brain edema. Neurol Res 20:637–642PubMedGoogle Scholar
  74. Graeber MB, Blakemore WF, Kreutzberg GW (2002) Cellular pathology of the central nervous system. In: Graham DI, Lantos PL (eds) Greenfield’s neuropathology, 7th edn, vol 1. Arnold, London, pp 123–191Google Scholar
  75. Graham DJ, Lawrence AE, Adams JH et al (1987) Brain damage in non-missile head injury secondary to high intracranial pressure. Neuropathol Appl Neurobiol 13:209–217PubMedCrossRefGoogle Scholar
  76. Graham DI, Smith C, Reichard R et al. (2004) Trials and tribulations using b-amyloid precursor protein immunohistochemistry to evalute traumatic brain injury in adults. Forensic Sci Int 146:89–96PubMedCrossRefGoogle Scholar
  77. GrandPré T, Nakamura F, Vartanian T, Strittmatter SM (2000) Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein. Nature 403:439–444PubMedGoogle Scholar
  78. Granger DN, Kubes P (1994) The microcirculation and inflammation: modulation of leukocyte-endothelial cell adhesion. J Leukoc Biol 55:662–675PubMedGoogle Scholar
  79. Granville DJ, Carthy CM, Hunt DW, McManus BM (1998) Biology of disease. Apoptosis: molecular aspects of cell death and disease. Lab Invest 78:893–913PubMedGoogle Scholar
  80. Grassmann CB, Potts DG (1974) Arachnoid granulations, radiology and anatomy. Radiology 113:95–100Google Scholar
  81. Gray F (1997) Lesions of the central nervous system in the early stages of human immunodeficiency virus infection. Rev Neurol Paris 153:629–640PubMedGoogle Scholar
  82. Greenwood J (1991) Mechanisms of blood-brain barrier breakdown. Neuroradiology 33:95–100PubMedCrossRefGoogle Scholar
  83. Griffin WS, Stanley LC, Ling C et al. (1989) Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc Natl Acad Sci USA 86:7611–7615PubMedGoogle Scholar
  84. Grizzle WE, Stockard CR, Billings PE (2001) The effects of tissue processing variables other than fixation on histochemical staining and immunohistochemical detection of antigens. J Histotechnol 24:213Google Scholar
  85. Haas CA, Donath C, Kreutzberg GW (1993) Differential expression of immediate early genes after transection of the facial nerve. Neuroscience 53:91–99PubMedCrossRefGoogle Scholar
  86. Harding B, Copp AJ (1997) Malformations. In: Graham DI, Lantos PL (eds) Greenfield’s neuropathology, 6th edn, vol 1. Arnold, London, pp 397–533Google Scholar
  87. Harlan JM, Liu DY (1992) Adhesion: its role in inflammatory disease. WH Freeman, New YorkGoogle Scholar
  88. Hart DNJ, Fabre JW (1981) Demonstration and characterization of Ia-positive dendritic cells in the interstitial connective tissues of rat heart and other tissues, but not brain. J Exp Med 153:347–361Google Scholar
  89. Hart MN, Fabry Z (1995) CNS antigen presentation. Trends Neurosci 18:475–481PubMedCrossRefGoogle Scholar
  90. Hartung HP, Heininger K, Schäfer B et al (1988) Immune mechanisms in inflammatory polyneuropathy. Ann NY Acad Sci 540:122–161PubMedGoogle Scholar
  91. Haymaker W, Margoles C, Pentschew A et al (1961) Pathology of kernicterus and posticteric encephalopathy: presentation of 87 cases, with a consideration of pathogenesis and etiology. In: Swinyard CA (ed) Kernicterus and its importance in cerebral palsy. CC Thomas, Springfield, Ill., pp 21–52Google Scholar
  92. Heiss WD (2000) Ischemic penumbra: evidence from functional imaging in man. J Cereb Blood Flow Metab 20:1276–1293PubMedGoogle Scholar
  93. Heiss WD, Rosner G (1983) Functional recovery of cortical neurons as related to degree and duration of ischemia. Ann Neurol 14:294–301PubMedCrossRefGoogle Scholar
  94. Hickey WF, Kimura H (1988) Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science 239:290–292PubMedGoogle Scholar
  95. Hickey WF, Hsu BL, Kimura H (1991) T-lymphocyte entry into the central nervous system. J Neurosci Res 28:254–260PubMedCrossRefGoogle Scholar
  96. Hickey WF, Lassmann H, Cross AH (1997) Lymphocyte entry and the initiation of inflammation in the central nervous system. In: Keane RW, Hickey WF (eds) Immunology of the nervous system. Oxford University Press, New York, pp 200–225Google Scholar
  97. Hirai O, Handa H, Ishikawa M (1986) Cerebral blood volume as another cause of intracranial hypertension following cold-induced edema. In: Miller JD, Teasdale GM, Rowan JO, Galbraith SL, Mendelow AD (eds) Intracranial pressure VI. Springer, Berlin Heidelberg New York, pp 146–150Google Scholar
  98. Hirano A (1981) A guide to neuropathology. Igaku-Schoin, TokyoGoogle Scholar
  99. Hsu CY, Hu ZY, Doster SK (1995) Cell-mediated injury. In: Narayan RK, Wilberger JE, Povlishock JT (eds) Neurotrauma. McGraw-Hill, New York, pp 1433–1444Google Scholar
  100. Huang F-P, Guohua XI, Keep RF et al (2002) Brain edema after experimental intracerebral hemorrhage: role of hemoglobin degradation products. J Neurosurg 96:287–293PubMedGoogle Scholar
  101. Hughes JT (1978) Pathology of the spinal cord. Lloyd Luke, London, pp 181–190Google Scholar
  102. Huppertz B, Frank H-G, Kaufmann P (1999) The apoptosis cascade — morphological and immunohistochemical methods for its visualization. Anat Embryol 200:1–18PubMedCrossRefGoogle Scholar
  103. Hurley RA, Bradley WG Jr, Latifi HT, Taber KH (1999) Normal pressure hydrocephalus: significance of MRI in a potentially treatable dementia. J Neuropsychiatry Clin Neurosci 11:297–300PubMedGoogle Scholar
  104. Hynes RO (1992) Integrins: versatility, modulation, and signaling of cell adhesion. Cell 69:11–25PubMedCrossRefGoogle Scholar
  105. Iadecola C (1999) Inducible nitric oxide synthase gene expression and ischemic brain damage. In: Ruffolo RR, Feuerstein GZ, Hunter AJ, Poste G, Metcalf BW (eds) Inflammatory cells and mediators in CNS diseases. Harwood Academic, New York, pp 113–136Google Scholar
  106. Ikegaya H, Heino J, Laaksonen H et al. (2004) Accumulation of plasma proteins in Purkinje cells as an indicator of bloodbrain barrier breakdown. Forensic Sci Int 146:121–124PubMedCrossRefGoogle Scholar
  107. Ikuta F, Hirano A, Zimmerman HM (1963) An experimental study of postmortem alterations in the granular layer of the cerebellar cortex. J Neuropath Exp Neurol 22:581–590PubMedGoogle Scholar
  108. Inuzuka T, Tamura A, Sato S et al. (1990) Changes in the concentration of cerebral protein following occlusion of the middle cerebral artery in rats. Stroke 21:917–922PubMedGoogle Scholar
  109. Jacob H (1947) Zur histopathologischen Diagnose des akuten und chronisch rezidivierenden Hirnödems. Arch Psychiatr Z Ges Neurol Psychiatr 179:158–165Google Scholar
  110. Jacob H, Pyrkosch W (1951) Frühe Hirnschäden bei Strangtod und in der Agonie. Arch Psychiat Z Neurol 187:177–186CrossRefGoogle Scholar
  111. Janzer RC, Friede RL (1979) Perisulcal infarcts: lesions caused by hypotension during increased intracranial pressure. Ann Neurol 6:339–404CrossRefGoogle Scholar
  112. Jean WC, Spellman SR, Nussbaum ES, Low WC (1998) Reperfusion injury after focal cerebral ischemia: the role of inflammation and the therapeutic horizon. Neurosurgery 43:1382–1397PubMedGoogle Scholar
  113. Jellinger KA, Stadelmann C (2002) Problems of programmed cell death in neurodegenerative disorders. In: Oehmichen M, Ritz-Timme S, Meissner C (eds) Aging. Morphological, biochemical, molecular and social aspects. In: Research in legal medicine, vol 27. Schmidt-Römhild, Lübeck, pp 123–144Google Scholar
  114. Johnston I, Paterson A (1974) Benign intracranial hypertension II. CSF pressure and circulation. Brain 97:301–312PubMedGoogle Scholar
  115. Jones PA, Andrews PJD, Midgley S et al (1994) Measuring the burden of secondary insults in head injured patients during intensive care. J Neurosurg Anesthesiol 6:4–14PubMedGoogle Scholar
  116. Kalmar B, Burnstock G, Vrbova G et al (2002) Upregulation of heat shock proteins rescues motor neurons from axotomy-induced cell death in neonatal rats. Exp Neurol 176:87–97PubMedCrossRefGoogle Scholar
  117. Kanthan R, Shuaib A (1995) Clinical evaluation of extracellular amino acids in severe head trauma by intracerebral in vivo microdialysis. J Neurol Neurosurg Psychiatry 59:326–327PubMedGoogle Scholar
  118. Kapoor R, Davies M, Blaker PA et al (2003) Blockers of sodium and calcium entry protect axons from nitric oxide-mediated degeneration. Ann Neurol 53:174–180PubMedCrossRefGoogle Scholar
  119. Kempermann G, Kuhn HG, Gage FH (1998) Experience-induced neurogenesis in the senescent dentate gyrus. J Neurosci 18:3206–3212PubMedGoogle Scholar
  120. Kempermann G, Gast D, Gage FH (2002) Neuroplasticity in old age: sustained fivefold induction of hippocampal neurogenesis by long-term environmental enrichment. Ann Neurol 52:135–143PubMedCrossRefGoogle Scholar
  121. Kermer P, Klöcker N, Bähr M (1999) Neuronal death after brain injury. Models, mechanisms, and therapeutic strategies in vivo. Cell Tissue Res 298:383–395PubMedCrossRefGoogle Scholar
  122. Keyvani K, Schallert T (2002) Plasticity-associated molecular and structural events in the injured brain. J Neuropath Exp Neurol 61:831–840PubMedGoogle Scholar
  123. Kimelberg HK (1995a) Brain edema. In: Kettenmann H, Ransom BR (eds) Neuroglia. Oxford University Press, New York, pp 919–935Google Scholar
  124. Kimelberg HK (1995b) Current concepts of brain edema. J Neurosurg 83:1051–1059PubMedGoogle Scholar
  125. Kimelberg HK, Rutledge E, Feustel PJ (1997) Cell swelling and effects of alcohol in experimental neural trauma. In: Oehmichen M, König HG (eds) Neurotraumatology — biomechanic aspects, cytologic and molecular mechanisms. Schmidt-Römhild, Lübeck, pp 295–315Google Scholar
  126. Klatzo I (1967) Neuropathological aspects of brain edema. J Neuropathol Exp Neurol 26:1–14PubMedGoogle Scholar
  127. Knopf PM, Basu D, Sirulnick E et al. (1994) B cell traffic and intrathecal antibody synthesis in normal brain. FASEB J 8:A248Google Scholar
  128. Koo EH, Abraham CR, Potter H et al. (1991) Developmental expression of α-anti-chymotrypsin in brain may be related to astrogliosis. Neurobiol Aging 12:495–501PubMedCrossRefGoogle Scholar
  129. Kooyk Y van, Wiel-van Kemenade E van de, Weder P et al. (1993) Lymphocyte function-associated antigen 1 dominates very late antigen 4 in binding of activated T-cells to endothelium. J Exp Med 177:185–190PubMedGoogle Scholar
  130. Lajtha A (1968) Transport as control mechanism of cerebral metabolite levels. In: Lajtha A, Ford DH (eds) Brain barrier system. Elsevier, Amsterdam, pp 201–232Google Scholar
  131. Langfitt TW, Weinstein JD, Kassell NF (1965) Cerebral vasomotor paralysis produced by intracranial hypertension. Neurology 15:632–641Google Scholar
  132. Lassmann H (1998) Pathology of multiple sclerosis. In: Compston A (ed) McAlpine’s multiple sclerosis, 3rd edn. Churchill Livingstone, London, pp 323–356Google Scholar
  133. Leech PJ, Miller JD (1974) Intracranial volume/pressure relationships during experimental brain compression in primates. II. Effect of induced changes in arterial pressure. J Neurol Neurosurg Psychiatry 37:1099–1104PubMedGoogle Scholar
  134. Leist M, Single B, Naumann H, Fava E et al (1990) Inhibition of mitochondrial ATP generation by nitric oxide switches apoptosis to necrosis. Exp Cell Res 249:396–403Google Scholar
  135. Li GL, Ahlgren S, Farooque M et al. (1997) Lesions of axons and dendrites in spinal cord trauma. In: Oehmichen M, König HG (eds) Neurotraumatology — biomechanic aspects, cytologic and molecular mechanisms. In: Research in legal medicine, vol 17. Schmidt-Römhild, Lübeck, pp 187–201Google Scholar
  136. Li GL, Farooque M, Holtz A, Olsson Y (1995) Microtubule-associated protein 2 as a sensitive marker for dendritic lesion after spinal cord trauma: an immunohistochemical study in the rat. Restor Neurol Neurosci 8:189–197Google Scholar
  137. Li S, Strittmatter SM (2003) Delayed systemic nogo-66 receptor antagonist promotes recovery from spinal cord injury. J Neurosci 23:4219–4227PubMedGoogle Scholar
  138. Lindenberg R (1955) Compression of brain arteries as a pathogenic factor for tissue necrosis and their areas of predilection. J Neuropathol Exp Neurol 14:233–243Google Scholar
  139. Lindenberg R (1982) Tissue reactions in the gray matter of the central nervous system. In: Haymaker W, Adams RD (eds) Histology and histopathology of the nervous system, vol 1. CC Thomas, Springfield, Ill., pp 973–1275Google Scholar
  140. Liou AK, Clark RS, Henshall DC et al. (2003) To die or not to die for neurons in ischemia, traumatic brain injury and epilepsy: a review on the stress-activated signaling pathways and apoptotic pathways. Prog Neurobiol 69:103–142PubMedCrossRefGoogle Scholar
  141. Lipton SA (1998) Neuronal injury associated with HIV-1: approaches and treatment. Annu Rev Pharmacol Toxicol 38:159–177PubMedCrossRefGoogle Scholar
  142. Majno G, Joris I (1995) Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 146:3–15PubMedGoogle Scholar
  143. Marmarou A, Anderson RL, Ward JD et al (1991) NINCDS Traumatic coma data bank. Intracranial pressure monitoring methodology. J Neurosurg 75:S21–S27Google Scholar
  144. Marmarou A, Barzo P, Fatouros P et al (1997) Traumatic brain swelling in head injured patients: brain edema or vascular engorgement? Acta Neurochir (Wien) 70:68–70Google Scholar
  145. Marmarou A, Fatouros PP, Barzó P et al (2000) Contribution of edema and cerebral blood volume to traumatic brain swelling in head-injured patients. J Neurosurg 93:183–193PubMedGoogle Scholar
  146. Marshall WJS, Jackson JLF, Langfitt TW (1969) Brain swelling caused by trauma and arterial hypertension. Arch Neurol 21:545–553PubMedGoogle Scholar
  147. Massa PT, Dörries R, Meulen V ter (1986) Viral particles induce Ia antigen expression on astrocytes. Nature 320:543–546PubMedCrossRefGoogle Scholar
  148. Massa PT, Schimpl A, Wecker E, Meulen V ter (1987) Tumor necrosis factor amplifies measles virus-mediated Ia induction on astrocytes. Proc Natl Acad Sci USA 84:7242–7245PubMedGoogle Scholar
  149. Matyszak MK, Lawson LJ, Perry VH, Gordon S (1992) Stromal macrophages of the choroid plexus situated at an interface between the brain and peripheral immune system constitutively express major histocompatibility class II antigens. J Neuroimmunol 40:173–181PubMedCrossRefGoogle Scholar
  150. Matz PG, Lewén A, Chan PH (2001) Neuronal, but not microglial, accumulation of extravasated serum proteins after intracerebral hemolysate exposure is accompanied by cytochrome C release and DNA fragmentation. J Cereb Blood Flow Metab 21:921–928PubMedGoogle Scholar
  151. McConkey DJ (1998) Biochemical determinants of apoptosis and necrosis. Toxicol Lett 3:157–168Google Scholar
  152. McEver RP (1994) Selectins. Curr Opin Immunol 6:75–84PubMedCrossRefGoogle Scholar
  153. McGee AW, Strittmatter SM (2003) The Nogo-66 receptor: focusing myelin inhibition of axon regeneration. Trends Neurosci 26:193–198PubMedCrossRefGoogle Scholar
  154. McIntosh TK, Saatman KE, Raghupathi R et al. (1998) The molecular and cellular sequelae of experimental traumatic brain injury: pathogenetic mechanisms. Neuropathol Appl Neurobiol 24:251–268PubMedCrossRefGoogle Scholar
  155. McKhan GM (2002) New neurons for aging brains. Ann Neurol 52:133–134Google Scholar
  156. Medawar PB (1948) Immunity of homologous grafted skin. III. The fate of skin monografts transplanted to the brain, to subcutaneous tissue and to the anterior chamber of the eye. Br J Exp Pathol 29:58–69PubMedGoogle Scholar
  157. Meeusen EN, Premier RR, Brandon MR (1996) Tissue-specific migration of lymphocytes: a key role for Th1 and Th2 cells? Immunol Today 17:421–424PubMedCrossRefGoogle Scholar
  158. Mendelow AD, Baethmann A, Czernicki Z et al (2000) A summary of the XIth International Brain Edema Symposium held in Newcastle-upon-Tyne, England in June 1999. In: Mendelow AD, Baethmann A, Czernicki Z et al (eds) Brain edema XI. Proceedings of the 11th International Symposium, Newcastleupon-Tyne, UK, 6-10 June 1999, pp 9–10Google Scholar
  159. Meyer A (1920) Herniation of the brain. Arch Neurol Psychiatry 4:387–400Google Scholar
  160. Miller JD, Ironside JW (1997) Raised intracranial pressure, oedema and hydrocephalus. In: Graham DI, Lantos PL (eds) Greenfield’s neuropathology. Arnold, London, pp 157–195Google Scholar
  161. Miller JD, Becker DP, Ward JD et al (1977) Significance of intracranial hypertension in severe head injury. J Neurosurg 47:503–516PubMedGoogle Scholar
  162. Miller JD, Butterworth JF, Gudeman SK et al (1981) Further experience in the management of severe head injury. J Neurosurg 54:289–299PubMedGoogle Scholar
  163. Miyamoto O, Auer RN (2000) Hypoxia, hyperoxia, ischemia and brain necrosis. Neurology 54:362–371PubMedGoogle Scholar
  164. Morgan BP (1999) Complement in brain inflammation and injury. In: Ruffolo RR, Feuerstein GZ, Hunter AJ, Poste G, Metcalf BW (eds) Inflammatory cells and mediators in CNS diseases. Harwood Academic, New York, pp 283–296Google Scholar
  165. Müller G (1930) Zur Frage der Altersbestimmung histologischer Veränderungen im menschlichen Gehirn unter Berücksichtigung der örtlichen Verteilung. Z Neurol Psychiat 124:1–112Google Scholar
  166. Nawashiro H, Shima K, Chigasaki H (1995) Immediate cerebrovascular responses to closed head injury in the rat. J Neurotrauma 11:189–197Google Scholar
  167. Niess C, Grauel U, Toennes SW, Bratzke H (2002) Incidence of axonal injury in human brain tissue. Acta Neuropathol (Berl) 104:79–84Google Scholar
  168. Norenberg MD (1997) Astrocytes: normal aspects and response to CNS injury. In: Keane RW, Hickey WF (eds) Immunology of the nervous system. Oxford University Press, New York, pp 173–199Google Scholar
  169. Oehmichen M (1976a) Cerebrospinal fluid cytology. An introduction and atlas. WB Saunders, Philadelphia, Pa.Google Scholar
  170. Oehmichen M (1976b) Characterization of mononuclear phagocytes of human CSF using membrane markers. Acta Cytol 20:548–552PubMedGoogle Scholar
  171. Oehmichen M (1978) Mononuclear phagocytes in the central nervous system. Springer, Berlin Heidelberg New YorkGoogle Scholar
  172. Oehmichen M (1980) Enzyme alterations in brain tissue during the early postmortal interval with reference to the histomorphology: review of the literature. Z Rechtsmed 85:81–95PubMedCrossRefGoogle Scholar
  173. Oehmichen M (1982) Functional properties of microglia. In: Smith WT, Cavanagh JB (eds) Recent advances in neuropathology, vol 2. Churchill Livingstone, Edinburgh, pp 83–107Google Scholar
  174. Oehmichen M (1983) Inflammatory cells in the central nervous system. Current state of basic research in immunology, pathology and forensic medicine. In: Zimmermann HM (ed) Progress in neuropathology, vol 5. Raven, New York, pp 227–335Google Scholar
  175. Oehmichen M (1995) Estimating wound age and distinguishing intravital from postmortem processes in forensic medicine — introductory remarks. In: Oehmichen M, Kirchner H (eds) Research in legal medicine, vol 13, The wound healing process: forensic pathological aspects. Schmidt-Römhild, Lübeck, pp 15–21Google Scholar
  176. Oehmichen M, Gencic M (1980a) Postmortal diffusion of plasma albumin in rat brain. Z Rechtsmed 84:113–123PubMedGoogle Scholar
  177. Oehmichen M, Gencic M (1980b) Postmortal histomorphologic and histozymatic alterations in rats brain. Pathol Res Pract 169:72–83PubMedGoogle Scholar
  178. Oehmichen M, Huber H (1976) Reactive microglia with membrane features of mononuclear phagocytes. J Neuropathol Exp Neurol 35:30–39PubMedGoogle Scholar
  179. Oehmichen M, Grüninger H, Wiethölter H, Gencic M (1979) Lymphatic efflux of intracerebrally injected cells. Acta Neuropathol (Berl) 45:61–65Google Scholar
  180. Oehmichen M, Meissner C, Schmidt V et al. (1999) Pontine axonal injury after brain trauma and nontraumatic hypoxic-ischemic brain damage. Int J Leg Med 112:261–267CrossRefGoogle Scholar
  181. Oehmichen M, Ochs U, Meissner C (2000) Histochemical characterization of cytotoxic brain edema. Exp Pathol Toxicol 52:348–352Google Scholar
  182. Oldendorf WH (1977) The blood-brain barrier. Exp Eye Res [Suppl] 25:177Google Scholar
  183. O’Sullivan MG, Statham PF, Jones PA et al (1994) Role of intracranial pressure monitoring in severely head injured patients without signs of intracranial hypertension on initial computerised tomography. J Neurosurg 80:46–50Google Scholar
  184. Pachter JS, Cries HE de, Fabry Z (2003) The blood-brain barrier and its role in immune privilege in the central nervous system. J Neuropathol Exp Neurol 62:593–604PubMedGoogle Scholar
  185. Parsons AA, Hunter AJ (1999) Perspectives in neuroinjury and disease. In: Ruffolo RR, Feuerstein GZ, Hunter AJ, Poste G, Metcalf BW (eds) Inflammatory cells and mediators in CNS diseases. Harwood Academic, New York, pp 1–19Google Scholar
  186. Perry VH, Gordon S (1997) Microglia and macrophages. In: Keane RW, Hickey WF (eds) Immunology of the nervous system. Oxford University Press, New York, pp 155–172Google Scholar
  187. Perry VH, Bell MD, Anthony DC (1999) Unique aspects of inflammation in the central nervous system. In: Ruffolo RR, Feuerstein GZ, Hunter AJ, Poste G, Metcalf BW (eds) Inflammatory cells and mediators in CNS diseases. Harwood Academic, New York, pp 21–38Google Scholar
  188. Pierpaoli C, Alger JR, Righini A et al. (1996) High temporal resolution diffusion MRI of global cerebral ischemia and reperfusion. J Cereb Blood Flow Metab 16:892–905PubMedGoogle Scholar
  189. Platt N, Silva RP da, Gordon S (1998) Recognizing death: the phagocytosis of apoptotic cells. Trends Cell Biol 8:365–372PubMedCrossRefGoogle Scholar
  190. Polazzi E, Gianni T, Contestabile A (2001) Microglial cells protect cerebellar granule neurons from apoptosis: evidence for reciprocal signaling. Glia 36:271–280PubMedCrossRefGoogle Scholar
  191. Povlishock JT (1992) Traumatically induced axonal injury: pathogenesis and pathobiological implications. Brain Pathol 2:1–12PubMedGoogle Scholar
  192. Prat A, Biernacki K, Wosik K, Antel JP (2001) Glial cell influence on the human blood-brain barrier. Glia 36:145–155PubMedCrossRefGoogle Scholar
  193. Prinjha R, Moore SE, Vinson M et al (2000) Inhibitor of neurite outgrowth in humans. Nature 403:383–384PubMedGoogle Scholar
  194. Purpura DP (1975) Morphogenesis of visual cortex in preterm infants. In: Brazier MAB (ed) Growth and development of the brain: nutrition, genetic and environmental factors. Raven, New York, pp 33–45Google Scholar
  195. Purpura DP (1976) Structure dysfunction relations in the visual cortex of preterm infants. In: Brazier MAP, Coceani F (eds) Dysfunction in infantile febrile convulsions. Raven, New York, pp 223–236Google Scholar
  196. Quadbeck G (1967) Physiologie und Pathologie der Blut-Hirnschranke. Hippokrates 38:45–53PubMedGoogle Scholar
  197. Quadbeck G (1968) Clinical importance of alterations in barrier. In: Lajtha A, Ford DH (eds) Brain barrier systems. Elsevier, Amsterdam, pp 343–361Google Scholar
  198. Raghupathi R, Graham DI, McIntosh TK (2000) Apoptosis after traumatic brain injury. J Neurotrauma 17:927–938PubMedGoogle Scholar
  199. Ramer MS, Priestley JV, McMahon SB (2000) Functional regeneration of sensory axons into the adult spinal cord. Nature 403:312–316PubMedCrossRefGoogle Scholar
  200. Reese TS, Karnowsky MJ (1967) Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol 34:207–217PubMedCrossRefGoogle Scholar
  201. Reichard RR, White CL, Hladik CL, Dolinak D (2003) Beta-amyloid precursor protein staining. I. Nonhomicidal pediatric medicolegal autopsies. J Neuropathol Exp Neurol 62:237–247PubMedGoogle Scholar
  202. Reilly CE (2002) Astrocytes instruct stem cells to differentiate into neurons. J Neurol 249:950–952PubMedGoogle Scholar
  203. Rosenblum WI (1997) Histopathologic clues to the pathways of neuronal death following ischemia/hypoxia. J Neurotrauma 14:313–326PubMedGoogle Scholar
  204. Rothwell N, Toulmond S, Allan S et al. (1999) Cytokines in acute brain injury and stroke. In: Ruffolo RR, Feuerstein GZ, Hunter AJ, Poste G, Metcalf BW (eds) Inflammatory cells and mediators in CNS diseases. Harwood Academic, New York, pp 471–482Google Scholar
  205. Rubin LL (1997) Neuronal cell death: when, why and how. Br Med Bull 53:617–631PubMedGoogle Scholar
  206. Scharrer E (1938) On dark and light — cells in the brain and liver. Anat Rec 72:53–65CrossRefGoogle Scholar
  207. Schmid-Schönbein GW, DeLano FA, Costa J, Harris AG (1999) Parenchymal cell death and leukocyte-endothelial cell interaction in acute experimental inflammation. In: Ruffolo RR, Feuerstein GZ, Hunter AJ, Poste G, Metcalf BW (eds) Inflammatory cells and mediators in CNS diseases. Harwood Academic, New York, pp 39–52Google Scholar
  208. Schoettle RJ, Kochanek PM, Magargee MJ et al. (1990) Early polymorphonuclear leukocyte accumulation correlates with the development of posttraumatic cerebral edema in rats. J Neurotrauma 7:207–272PubMedCrossRefGoogle Scholar
  209. Scholz W (1953) Selective neuronal necrosis and its topistic patterns in hypoxemia and oligemia. J Neuropath Exp Neurol 12:249PubMedGoogle Scholar
  210. Schröder ML, Muizelaar JP, Fatouros PP et al. (1998) Regional cerebral blood volume after severe head injury in patients with regional cerebral ischemia. Neurosurgery 42:1276–1280PubMedGoogle Scholar
  211. Schwab ME (1993) Experimental aspects of spinal cord regeneration. Curr Opin Neurol Neurosurg 6:549–553PubMedGoogle Scholar
  212. Schwab ME (2000) Finding the lost target. Nature 403:257–260PubMedGoogle Scholar
  213. Schwab ME, Caroni P (1988) Oligodendrocytes and CNS myelin are nonpermissive substrates for neurite growth and fibroblast spreading in vitro. J Neurosci 8:2381–2393PubMedGoogle Scholar
  214. Sedgwick JD, Hickey WF (1997) Antigen presentation in the central nervous system. In: Keane RW, Hickey WF (eds) Immunology of the nervous system. Oxford University Press, New York, pp 364–418Google Scholar
  215. Seida M, Vass K, Tomida S, Wagner HG, Klatzo I (1989) Observations on cerebral ischaemia in cats at injury threshold levels. Neurol Res 11:205–212PubMedGoogle Scholar
  216. Selhorst JB, Gudeman SK, Butterworth JF et al (1985) Papilledema after acute head injury. Neurosurgery 16:357–363PubMedGoogle Scholar
  217. Sheriff FE, Bridges LR, Sivaloganatham S (1994) Early detection of axonal injury after human head trauma using immunocytochemistry for ß-amyloid precursor protein. Acta Neuropathol (Berl) 87:55–62Google Scholar
  218. Simpson JE, Newcombe J, Cuzner ML, Woodroofe MN (1998) Expression of monocyte chemoattractant protein-1 and other beta-chemokines by resident glia and inflammatory cells in multiple sclerosis lesions. J Neuroimmunol 84:238–249PubMedCrossRefGoogle Scholar
  219. Simson PE, Criswell HE, Johnson KB (1991) Ethanol inhibits NMDAevoked electrophysiological activity in vivo. J Pharmacol Exp Ther 257:225–231PubMedGoogle Scholar
  220. Sobel RA, Mitchell ME, Fondren G (1990) Intercellular adhesion molecule-1 (ICAM-1) in cellular immune reactions in the human central nervous system. Am J Pathol 136:1309–1316PubMedGoogle Scholar
  221. Song H, Stevens CF, Gage FH (2002) Astroglia induce neurogenesis from adult neural stem cells. Nature 417:39–44PubMedCrossRefGoogle Scholar
  222. Spielmeyer W (1922) Histopathologie des Nervensystems. Springer, Berlin Heidelberg New YorkGoogle Scholar
  223. Springer TA (1990) Adhesion receptors of the immune system. Nature 346:425–434PubMedCrossRefGoogle Scholar
  224. Squier MV (1993) Acquired diseases of the nervous system. In: Keeling JW (ed) Fetal and neonatal pathology. Springer, Berlin Heidelberg New York, pp 571–593Google Scholar
  225. Sternberger NH, Sternberger LA, Kies MW, Shear CR (1989) Cell surface endothelial proteins altered in experimental allergic encephalomyelitis. J Neuroimmunol 21:241–248PubMedCrossRefGoogle Scholar
  226. Strich SJ (1956) Diffuse degeneration of the cerebral white matter in severe dementia following head injury. J Neurol Neurosurg Psychiatry 19:163–185PubMedGoogle Scholar
  227. Summer BE, Watson WE (1971) Retraction and expansion of the dendritic tree of motor neurones of adult rats induced in vivo. Nature 233:273–275Google Scholar
  228. Svendsen CN (2002) The amazing astrocyte. Nature 417:29–32PubMedCrossRefGoogle Scholar
  229. Teasdale E, Cardos E, Galbraith S, Teasdale G (1984) CT scan in severe diffuse head injury: physiological and clinical correlations. J Neurol Neurosurg Psychiatry 47:600–603PubMedGoogle Scholar
  230. Thompson AM (1970) Hyperosmotic effects on brain uptake of non-electrolytes. In: Crone CC, Lassen N (eds) Capillary permeability. Alfred Benzon Symposium II. Munksgaard, Copenhagen, pp 459–472Google Scholar
  231. Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281:1312–1316PubMedCrossRefGoogle Scholar
  232. Traugott U (1987) Multiple sclerosis: relevance of class I and class II MHC-expressing cells to lesion development. J Neuroimmunol 16:283–302PubMedGoogle Scholar
  233. Vermes I, Haanen C, Reutelingsperger CPM (1998) Molecular biology of apoptosis and programmed cell death. In: Aruoma OI, Halliwell B (eds) Molecular biology of free radicals in human diseases. OICA International, London, pp 225–286Google Scholar
  234. Waksman BH (1997) A brief history of neuroimmunology. In: Keane RW, Hickey WF (eds) Immunology of the nervous system. Oxford University Press, New YorkGoogle Scholar
  235. Waterhouse NJ (2003) The cellular energy crisis: mitochondria and cell death. Med Sci Sports Exerc 35:105–110PubMedGoogle Scholar
  236. Waxman SG (2003) Nitric oxide and the axonal death cascade. Ann Neurol 53:150–153PubMedCrossRefGoogle Scholar
  237. Weiss JM, Downie SA, Lyman WD, Berman JW (1998) Astrocytederived monocyte-chemoattractant protein-1 directs the transmigration of leukocytes across a model of the human blood-brain barrier. J Immunol 161:6896–6903PubMedGoogle Scholar
  238. Weiss SJ (1989) Tissue destruction by neutrophils. N Engl J Med 320:365–376PubMedGoogle Scholar
  239. Weller RO, Shulman K (1972) Infantile hydrocephalus: clinical, histological and ultrastructural study of brain damage. J Neurosurg 36:255–265PubMedGoogle Scholar
  240. Windhagen A, Newcombe J, Dangond F et al. (1995) Expression of costimulatory molecules B7-1 (CD80), B7-2 (CD86), and interleukin 12 cytokine in multiple sclerosis lesions. J Exp Med 182:1985–1986PubMedCrossRefGoogle Scholar
  241. Yakovlev AG, Faden AL (1997) Traumatic brain injury regulates expression of ced-related genes modulating neuronal apoptosis. In: Oehmichen M, König HG (eds) Neurotraumatology — biomechanic aspects, cytologic and molecular mechanisms. Schmidt-Römhild, Lübeck, pp 107–120Google Scholar
  242. Zach O, Bauer HC, Richter K et al. (1997) Expression of a chemotactic cytokine (MCP-1) in cerebral capillary endothelial cells in vitro. Endothelium 5:143–153PubMedCrossRefGoogle Scholar
  243. Zinkernagel RM, Doherty PC (1974) Immunological surveillance against altered self components by sensitized T-lymphocytes in lymphocytic choriomeningitis. Nature (Lond) 251:547–548Google Scholar
  244. Zoppo GJ del (1997) Selectins, ICAMs, and integrins in CNS injury. In: Ruffolo PR, Feuerstein GZ, Hunter AJ, Poste G, Metcalf BW (eds) Inflammatory cells and mediators in CNS diseases. Harwood Academic, New York, pp 395–412Google Scholar
  245. Zwienenberg M, Muizelaar JP (1999) Severe pediatric head injury: the role of hyperemia revisited. J Neurotrauma 11:937–943Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Personalised recommendations