Separating and testing

  • Ph. Darondeau
Contributed Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 210)


A class of languages is separable if, for each pair of non identical languages L′ and L″, there exists some language L such that L ∩ L′=ø ↔ L ∩ L″≠ø. We give a negative answer to the question of separability for a large variety of classes of infinitary languages, from Algω to Σ 1 1 . We then prove that there exists for the calculus of communicating systems no notion of testing which can separate every pair of agents which differ by their infinite sequences of visible actions.


Open Computation Operational Semantic Infinite Sequence Generate Device Finite Alphabet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    BOASSON L., NIVAT M., "Adherences of Languages" Journal of Computer and System Sciences 20 (1980), 285–309CrossRefGoogle Scholar
  2. (2).
    DARONDEAU Ph., "Une critique de la notion de test de processus fondée sur la non séparabilité de certaines classes de langages" RR 259 IRISA Rennes (1985)Google Scholar
  3. (3).
    DARONDEAU Ph., "About Fair Asynchrony" — à paraître dans T.C.S. —Google Scholar
  4. (4).
    EILENBERG S., "Automata, languages and Machines" Vol. A, Academic Press (1974)Google Scholar
  5. (5).
    GONZALES ALVADARO C.A., "Le Mélange et le Mélange Itératif: les Opérateurs Concurrents" Thèse de 3ème cycle, Université de Paris VII (1984)Google Scholar
  6. (6).
    GUESSARIAN I., "Algebraic Semantics" Springer-Verlag LNCS 99 (1981)Google Scholar
  7. (7).
    HENNESSY M., de NICOLA R., "Testing Equivalences for Processes" Theoretical Computer Science 34 (1984) 83–134CrossRefGoogle Scholar
  8. (8).
    HENNESSY M., "Synchronous and Asynchronous Experiments on Processes" Information and Control 59 (1983) 36–83CrossRefGoogle Scholar
  9. (9).
    MILNER R., "Fully Abstract Models of Typed Lambda-Calculi" Theoretical Computer Science 4 (1977) 1–23CrossRefGoogle Scholar
  10. (10).
    MILNER R., "A Calculus of Communicating Systems" Springer-Verlag LNCS 92 (1980)Google Scholar
  11. (11).
    ROGERS H., "Theory of Recursive Functions and Effective Computability" Mc Graw-Hill (1967)Google Scholar
  12. (12).
    SHAW A.C., "Software Descriptions with Flow Expressions" IEEE Transactions on Software Engineering 3 (1978) 242–254Google Scholar
  13. (13).
    STOY J.E., "Denotational Semantics" M.I.T. Press (1977)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • Ph. Darondeau
    • 1
  1. 1.IRISA, Campus de BeaulieuRennes Cedex

Personalised recommendations