On the entropy of a formal language

  • A. de Luca
Mittwochvormittag Hauptvortrag
Part of the Lecture Notes in Computer Science book series (LNCS, volume 33)


Structure Function Channel Capacity Formal Language Kolmogorov Complexity Sequential Decoder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Banerji, R.B.-Phrase structure languages, finite machines and channel capacity.Information and Control,6,153–162,1963.MathSciNetCrossRefGoogle Scholar
  2. 2.
    Chaitin, G.J.-On the length of programs for computing finite binary sequences.J.ACM,13,547–569,1966.MathSciNetCrossRefGoogle Scholar
  3. 3.
    Chomsky, N.and G.A. Miller,Finite state languages.Information and Control,1,91–112,1958.MathSciNetCrossRefGoogle Scholar
  4. 4.
    De Luca,A.,Complexity and information theory.Proc.of summer school on"Coding and complexity."CISM,Udine,July 15–26,1974.Google Scholar
  5. 5.
    De Luca,A.,Some information-theoretic aspects of the complexity theory,Proc.of the informal meeting on "Computational complexity,codes and formal languages".Laboratorio di Cibernetica,Naples,March 13–14, 1975.Google Scholar
  6. 6.
    De Luca A.and E.Fischetti,Outline of a new logical approach to information theory.In "New concepts and technologies in parallel information processing."(E.R.Caianiello ed.).Proc.of NATO summer school,Capri,June,17–30,1973.Noordhoff,Series E,n.9,1975.Google Scholar
  7. 7.
    Kaminger, F.P.,The non computability of the channel capacity of context-sensitive languages".Information and Control,17,175–182,1970.MathSciNetCrossRefGoogle Scholar
  8. 8.
    Khinchin,A.I.,"Mathematical foundations of information theory".Dover Publ.1950Google Scholar
  9. 9.
    Kolmogorov, A.N.,Three approaches to the quantitative definition of information.Problemy Pederachi Informatsii,1,3–11,1965.zbMATHGoogle Scholar
  10. 10.
    Kuich, W.,On the entropy of context-free languages.Information and Control,16,173–200,1970.MathSciNetCrossRefGoogle Scholar
  11. 11.
    Levin, L.A.and A.K. Zvonkin,The complexity of finite objects and the development of the concepts of information and randomness by means of the theory of algorithms,Usphehi Mat.Nauk,25,85–127,1970zbMATHGoogle Scholar
  12. 12.
    Mandelbrot,B.,On recurrent noise limiting coding,Proc.Symp.on Inf.Networks,Polytechn.Inst.of Brooklyn,205–221,1954.Google Scholar
  13. 13.
    Martin-Lof, P.,The definition of random sequences,Information and Control,6,602–619,1966.MathSciNetCrossRefGoogle Scholar
  14. 14.
    Salomaa, A."Formal languages".Academic Press. New York and London,1973.zbMATHGoogle Scholar
  15. 15.
    Schnorr,C.P.,"Zufalligkeit und Wahrscheinlichkeit".Springer Verlag Lecture Notes in Mathematics,n.218,1970.Google Scholar
  16. 16.
    Shannon, C.E.,A mathematical theory of communication,Bell Syst.Tech.J.27,379–423,1948.MathSciNetCrossRefGoogle Scholar
  17. 17.
    Siromoney, R.,Channel capacity of equal matrix languages.Information and Control,14,507–511,1969.MathSciNetCrossRefGoogle Scholar
  18. 18.
    Solomonoff, R.J.,A formal theory of inductive inference.Part 1,Information and Control,l7,1–22,1964.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1975

Authors and Affiliations

  • A. de Luca
    • 1
    • 2
  1. 1.Laboratorio di Cibernetica del C.N.R., Arco FeliceNapoliItaly
  2. 2.Istituto di Scienze dell'Informazione dell'Università di SalernoItaly

Personalised recommendations