Formal language theory and theoretical computer science

  • Ronald V. Book
Dienstagvormittag Hauptvortrag
Part of the Lecture Notes in Computer Science book series (LNCS, volume 33)


Turing Machine Automatic Speech Recognition Program Scheme Theoretical Computer Science Recursion Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [1]
    G.H. Hardy. A Mathematician's Apology. Cambridge Univ. Press, 1940, reprinted 1967.Google Scholar
  2. [2]
    P. Naur. Programming languages, natural languages, and mathematics. Conference Record, 2nd ACM Symp. Principles of Programming Languages. Palo Alto, Calif., 1975, 137–148.Google Scholar
  3. [3]
    S. Ginsburg and S.A. Greibach. Principal AFL. J. Computer System Sci. 4 (1970), 308–338.MathSciNetCrossRefGoogle Scholar
  4. [4]
    S.A. Greibach. The hardest context-free language. SIAM J. Computing 2 (1973), 304–310.MathSciNetCrossRefGoogle Scholar
  5. [5]
    L. Boasson and M. Nivat. Le cylindre des languages lineaires n'est pas principal. Proc. 2nd GI — Profession Conf. Automata Theory and Formal Languages. Springer Verlag, to appear.Google Scholar
  6. [6]
    R. Book. Comparing complexity classes. J. Computer System Sci. 9 (1974), 213–229.MathSciNetCrossRefGoogle Scholar
  7. [7]
    R. Book. On hardest sets. In preparation.Google Scholar
  8. [8]
    N. Jones and W. Laaser. Complete problems for deterministic polynomial time recognizable languages. Proc. 6th ACM Symp. Theory of Computing. Seattle, Wash., 1974, 40–46.Google Scholar
  9. [9]
    A. Salomaa. Formal Languages. Academic Press. New York, 1973.zbMATHGoogle Scholar
  10. [10]
    P.G. Doucet. On the applicability of L-systems in developmental biology. In [11].Google Scholar
  11. [11]
    A. Lindenmayer and G. Rozenberg (eds.). Abstract of papers presented at a Conference on Formal Languages, Automata, and Development. Univ. Utrecht, Utrecht, The Netherlands, 1975.Google Scholar
  12. [12]
    R. Book. Time-bounded grammars and their languages. J. Computer System Sci. 4 (1971), 397–429.MathSciNetCrossRefGoogle Scholar
  13. [13]
    G.T. Herman and G. Rozenberg. Developmental Systems and Languages. North-Holland Publ. Co. Amsterdam, 1974.zbMATHGoogle Scholar
  14. [14]
    G. Rozenberg and A. Salomaa (eds.). L Systems. Lecture Notes in Computer Science, Vol. 15. Springer-Verlag, 1974.Google Scholar
  15. [15]
    Proceedings of the 1974 Conference on Biologically Motivated Automata Theory. McLean, Va. Published by the IEEE Computer Society.Google Scholar
  16. [16]
    S. Garland and D. Luckham. Program schemes, recursion schemes, and formal languages. J. Computer System Sci. 7 (1973), 119–160.MathSciNetCrossRefGoogle Scholar
  17. [17]
    D. Luckham, D. Park, and M. Paterson. On formalized computer programs. J. Computer System Sci. 4 (1970), 220–249.MathSciNetCrossRefGoogle Scholar
  18. [18]
    B.K. Rosen. Program equivalence and context-free grammars. Proc. 13th IEEE Symposium on Switching and Automata Theory. College Park, Md., 1972, 7–18.Google Scholar
  19. [19]
    P.J. Downey. Formal languages and recursion schemes. Proc. 8th Princeton Conference on Information Science and Systems. Princeton, N.J., 1974.Google Scholar
  20. [20]
    J. Engelfriet. Simple Program Schemes and Formal Longuages. Lecture Notes in Computer Science, Vol. 20. Springer-Verlag, 1974.Google Scholar
  21. [21]
    M Nivat. On the interpretation of recursive program schemes. IRIA Technical Report, 1974.Google Scholar
  22. [22]
    E. Ashcroft, Z. Manna, and A. Pnueli. Decidable properties of monadic functional schemes. J. Assoc. Comput. Mach. 20 (1973), 489–499.MathSciNetCrossRefGoogle Scholar
  23. [23]
    E.P. Friedman. The inclusion problem for simple languages. Theoretical Computer Science 1 (1975). To appear.Google Scholar
  24. [24]
    E.P. Friedman. Relationships between monadic recursion schemes and deterministic context-free languages. Proc. 15th IEEE Symposium on Switching and Automata Theory. New Orleans, La., 1974, 43–51.Google Scholar
  25. [25]
    K. Fu. Syntactic Methods in Pattern Recognition. Academic Press. New York, 1974.zbMATHGoogle Scholar
  26. [26]
    R. Lipton and L. Snyder. On the parsing of speech. Technical Report Number 37, Department of Computer Science, Yale University, 1975.Google Scholar
  27. [27]
    S. Levinson. An Artificial Intelligence Approach to Automatic Speech Recognition. Doctoral Dissertation, U. Rhode Island, 1974.Google Scholar
  28. [28]
    J.L. Peterson. Computation sequence sets. Unpublished manuscript.Google Scholar
  29. [29]
    W.H. Byrn. Sequential Processes, Deadlocks, and Semaphore Primitives. Doctoral Dissertation, Harvard University, 1974.Google Scholar
  30. [30]
    W.E. Riddle. Modeling and Analysis of Supervisory Systems. Doctoral Dissertation, Stanford University, 1972.Google Scholar
  31. [31]
    R. Book. On languages accepted in polynomial time. SIAM J. Computing 1 (1972), 281–287.MathSciNetCrossRefGoogle Scholar
  32. [32]
    R. Floyd. Nondeterministic algorithms. J. Assoc. Comput. Mach. 14 (1967), 636–644.CrossRefGoogle Scholar
  33. [33]
    A. Aho and J. Ullman. The Theory of Parsing, Translating, and Compiling, Vol. I. Prentice-Hall Publ. Co., 1972.Google Scholar
  34. [34]
    S. Cook. The complexity of theorem-proving procedures. Proc. 3rd ACM Symp. Theory of Computing. Shaker Hts., Ohio, 1973, 343–353.Google Scholar
  35. [35]
    R. Karp. Reducibilities among combinatorial problems. In Complexity of Computer Computation (R. Miller and J. Thatcher, eds.). Plenum, N.Y., 1972, 85–104.Google Scholar
  36. [36]
    A. Aho, J. Hopcroft, and J. Ullman, The Design and Analysis of Computer Algorithms. Addison-Wesley, 1974.Google Scholar
  37. [37]
    R. Karp (ed.). Complexity of Computation. SIAM-AMS Proc. VII, Amer. Math. Soc. Providence, R.I., 1974.Google Scholar
  38. [38]
    J. Hartmanis and J. Simon. Feasible computations. Proc. GI-Jahrestagung 74. Springer-Verlag, to appear.Google Scholar
  39. [39]
    S. Cook. Characterizations of pushdown machines in terms of time-bounded computers. J. Assoc. Comput. Mach. 18 (1971), 4–18.MathSciNetCrossRefGoogle Scholar
  40. [40]
    R. Book and S.A. Greibach. Quasi-realtime languages. Math. Systems Theory 4 (1970), 97–111.MathSciNetCrossRefGoogle Scholar
  41. [41]
    A. Rosenberg. Real-time definable languages. J. Assoc. Comput. Mach. 14 (1967), 645–662.MathSciNetCrossRefGoogle Scholar
  42. [42]
    S. Aanderaa. On k-tape versus (k+1)-tape real time computation. In [37].Google Scholar
  43. [43]
    R. Book and M. Nivat. On linear languages and intersections of classes of languages. In preparation.Google Scholar
  44. [44]
    B. Baker and R. Book. Reversal-bounded multi-pushdown machines. J. Computer System Sci. 8 (1974), 315–332.MathSciNetCrossRefGoogle Scholar
  45. [45]
    R. Book, M. Nivat, and M. Paterson, Reversal-bounded acceptors and intersections of linear languages. SIAM J. Computing 3 (1974), 283–295.MathSciNetCrossRefGoogle Scholar
  46. [46]
    J. Hartmanis and H. Hunt. The LBA problem and its importance in the theory of computing. In [37].Google Scholar
  47. [47]
    C. Wrathall. Rudimentary predicates and relative computation. In preparation.Google Scholar
  48. [48]
    H. Hunt, D. Rosenkrantz, and T. Szymanski. On the equivalence, containment, and covering problems for the regular and context-free languages. J. Computer System Sci., to appear.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1975

Authors and Affiliations

  • Ronald V. Book
    • 1
  1. 1.Department of Computer ScienceYale UniversityNew HavenUSA

Personalised recommendations