Advertisement

Multislice CT pp 1079-1105 | Cite as

Clinical Application of Musculoskeletal CT: Trauma, Oncology, and Postsurgery

  • Pedro Augusto Gondim Teixeira
  • Alain BlumEmail author
Chapter
Part of the Medical Radiology book series (MEDRAD)

Abstract

Soon after its introduction to the clinical practice in the late 1970s, CT began to be used for the evaluation of musculoskeletal disorders (Wilson et al. 1978). As with other organs and systems, modern MSK imaging strategy uses a multimodality approach, taking advantage of the strengths of various imaging methods (radiographs, ultrasound, nuclear medicine, CT and MR imaging) (Cotten 2013). For a variety of reasons, CT is frequently part of the diagnostic workup and posttreatment follow-up of patients with MSK disorders. Due to its capacity to depict bony structures in great detail without superimposition, CT offers considerable advantages over conventional radiographs. Bone abnormalities are involved in the physiopathology of several types of MSK diseases, such as acute trauma, overstress syndromes, osteoarthritis, neoplasia, and inflammatory diseases. Finally, contrast-enhanced CT also has multiple applications in MSK imaging, allowing better visualization of soft tissue anomalies and further characterization of bony lesions.

Bibliography

  1. Andersson KM, Nowik P, Persliden J, Thunberg P, Norrman E (2015) Metal artefact reduction in CT imaging of hip prostheses – an evaluation of commercial techniques provided by four vendors. Br J Radiol 88(1052):20140473PubMedPubMedCentralCrossRefGoogle Scholar
  2. Anract P, Biau D, Babinet A, Tomeno B (2014) Pelvic reconstructions after bone tumor resection. Bull Cancer 101(2):184–194PubMedCrossRefGoogle Scholar
  3. Aurégan J-C, Pietton R, Bégué T, Anract P, Biau D (2016) Effect of anatomic site and irradiation on the rates of revision and infection of allograft-prosthesis composites after resection of a primary bone tumor: a meta-analysis. Arch Orthop Trauma Surg 136(10):1371–1380PubMedCrossRefGoogle Scholar
  4. Bamberg F, Dierks A, Nikolaou K, Reiser MF, Becker CR, Johnson TRC (2011) Metal artifact reduction by dual energy computed tomography using monoenergetic extrapolation. Eur Radiol 21(7):1424–1429PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bancroft LW (2011) Postoperative tumor imaging. Semin Musculoskelet Radiol 15(4):425–438PubMedCrossRefGoogle Scholar
  6. Bardo DME, Brown P (2008) Cardiac multidetector computed tomography: basic physics of image acquisition and clinical applications. Curr Cardiol Rev 4(3):231–243PubMedPubMedCentralCrossRefGoogle Scholar
  7. Beaman FD, Bancroft LW, Peterson JJ, Kransdorf MJ, Menke DM, DeOrio JK (2006) Imaging characteristics of bone graft materials. Radiographics 26(2):373–388PubMedCrossRefGoogle Scholar
  8. Beeres M, Wichmann JL, Paul J, Mbalisike E, Elsabaie M, Vogl TJ et al (2015) CT chest and gantry rotation time: does the rotation time influence image quality? Acta Radiol 56(8):950–954PubMedCrossRefGoogle Scholar
  9. Blum A, Meyer J-B, Raymond A, Louis M, Bakour O, Kechidi R et al (2016a) CT of hip prosthesis: new techniques and new paradigms. Diagn Interv Imaging 97(7–8):725–733PubMedCrossRefGoogle Scholar
  10. Blum A, Gondim-Teixeira P, Gabiache E, Roche O, Sirveaux F, Olivier P et al (2016b) Developments in imaging methods used in hip arthroplasty: a diagnostic algorithm. Diagn Interv Imaging 97(7–8):735–747PubMedCrossRefGoogle Scholar
  11. Bongers MN, Schabel C, Thomas C, Raupach R, Notohamiprodjo M, Nikolaou K et al (2015) Comparison and combination of dual-energy- and iterative-based metal artefact reduction on hip prosthesis and dental implants. PLoS One 10(11):e0143584PubMedPubMedCentralCrossRefGoogle Scholar
  12. Brenner DJ, Hall EJ (2007) Computed tomography – an increasing source of radiation exposure. N Engl J Med 357(22):2277–2284PubMedPubMedCentralCrossRefGoogle Scholar
  13. Chakarun CJ, Learch TJ, White EA, Menendez LR, Brien EW, Matcuk GR et al (2013) Limb-sparing surgery for distal femoral and proximal tibial bone lesions: imaging findings with intraoperative correlation. AJR Am J Roentgenol 200(2):W193–W203PubMedCrossRefGoogle Scholar
  14. Cook GE, Bates BD, Tornetta P, McKee MD, Morshed S, Slobogean GP et al (2015) Assessment of fracture repair. J Orthop Trauma 29(Suppl 12):S57–S61PubMedCrossRefGoogle Scholar
  15. Cotten A (2013) Imagerie musculosquelettique: pathologies générales, 2nd ed. Elsevier Masson, p 1064Google Scholar
  16. Dappa E, Higashigaito K, Fornaro J, Leschka S, Wildermuth S, Alkadhi H (2016) Cinematic rendering – an alternative to volume rendering for 3D computed tomography imaging. Insights Imaging 7(6):849–856PubMedPubMedCentralCrossRefGoogle Scholar
  17. Davies AM, Makwana NK, Grimer RJ, Carter SR (1997) Skip metastases in Ewing’s sarcoma: a report of three cases. Skelet Radiol 26(6):379–384CrossRefGoogle Scholar
  18. De Simone M, Muccio CF, Pagnotta SM, Esposito G, Cianfoni A (2013) Comparison between CT and MR in perfusion imaging assessment of high-grade gliomas. Radiol Med 118(1):140–151PubMedCrossRefGoogle Scholar
  19. Ebert LC, Schweitzer W, Gascho D, Ruder TD, Flach PM, Thali MJ et al (2016) Forensic 3D visualization of CT data using cinematic volume rendering: a preliminary study. AJR Am J Roentgenol 8:1–8Google Scholar
  20. Farshad-Amacker NA, Alkadhi H, Leschka S, Frauenfelder T (2013) Effect of high-pitch dual-source CT to compensate motion artifacts: a phantom study. Acad Radiol 20(10):1234–1239PubMedCrossRefGoogle Scholar
  21. Fletcher BD (1991) Response of osteosarcoma and Ewing sarcoma to chemotherapy: imaging evaluation. AJR Am J Roentgenol 157(4):825–833PubMedCrossRefGoogle Scholar
  22. Foster BR, Anderson SW, Uyeda JW, Brooks JG, Soto JA (2011) Integration of 64-detector lower extremity CT angiography into whole-body trauma imaging: feasibility and early experience. Radiology 261(3):787–795PubMedCrossRefGoogle Scholar
  23. Fritz J, Fishman EK, Corl F, Carrino JA, Weber KL, Fayad LM (2012) Imaging of limb salvage surgery. AJR Am J Roentgenol 198(3):647–660PubMedCrossRefGoogle Scholar
  24. Gervaise A, Teixeira P, Villani N, Lecocq S, Louis M, Blum A (2013) CT dose optimisation and reduction in osteoarticular disease. Diagn Interv Imaging 94(4):371–388PubMedCrossRefGoogle Scholar
  25. Geyer LL, Schoepf UJ, Meinel FG, Nance JW, Bastarrika G, Leipsic JA et al (2015) State of the art: iterative CT reconstruction techniques. Radiology 276(2):339–357PubMedCrossRefGoogle Scholar
  26. Geyer LL, Körner M, Harrieder A, Mueck FG, Deak Z, Wirth S et al (2016) Dose reduction in 64-row whole-body CT in multiple trauma: an optimized CT protocol with iterative image reconstruction on a gemstone-based scintillator. Br J Radiol 89(1061):20160003PubMedPubMedCentralCrossRefGoogle Scholar
  27. Gibson PD, Bercik MJ, Ippolito JA, Didesch J, Hwang JS, Koury KL et al (2016) The role of computed tomography scans in surgical planning for trimalleolar fracture. A survey of OTA members. J Orthop TraumaGoogle Scholar
  28. Gondim Teixeira PA (2013) Musculoskeletal disorders: DSA-like bone subtraction with 320 detector row CT. Visions magazine 21Google Scholar
  29. Gondim Teixeira PA, Meyer J-B, Baumann C, Raymond A, Sirveaux F, Coudane H et al (2014a) Total hip prosthesis CT with single-energy projection-based metallic artifact reduction: impact on the visualization of specific periprosthetic soft tissue structures. Skelet Radiol 43(9):1237–1246CrossRefGoogle Scholar
  30. Gondim Teixeira PA, Lecocq S, Louis M, Aptel S, Raymond A, Sirveaux F et al (2014b) Wide area detector CT perfusion: can it differentiate osteoid osteomas from other lytic bone lesions? Diagn Interv Imaging 95:587–594PubMedCrossRefGoogle Scholar
  31. Gondim Teixeira PA, Gervaise A, Louis M, Lecocq S, Raymond A, Aptel S et al (2015) Musculoskeletal wide detector CT: principles, techniques and applications in clinical practice and research. Eur J Radiol 84(5):892–900PubMedCrossRefGoogle Scholar
  32. Gondim Teixeira PA, Formery A-S, Jacquot A, Lux G, Loiret I, Perez M et al (2017a) Quantitative analysis of subtalar joint motion with 4D CT: proof of concept with cadaveric and healthy subject evaluation. AJR Am J Roentgenol 208(1):150–158PubMedCrossRefGoogle Scholar
  33. Gondim Teixeira PA, Formery A-S, Hossu G, Winninger D, Batch T, Gervaise A et al (2017b) Evidence-based recommendations for musculoskeletal kinematic 4D-CT studies using wide area-detector scanners: a phantom study with cadaveric correlation. Eur Radiol 27(2):437–446PubMedCrossRefGoogle Scholar
  34. Gruber L, Loizides A, Luger AK, Glodny B, Moser P, Henninger B et al (2016) Soft-tissue tumor contrast enhancement patterns: diagnostic value and comparison between ultrasound and MRI. AJR Am J Roentgenol 13:1–9Google Scholar
  35. Günther K-P, Schmitt J, Campbell P, Delaunay CP, Drexler H, Ettema HB et al (2013) Consensus statement “current evidence on the management of metal-on-metal bearings” – April 16, 2012. Hip Int 23(1):2–5PubMedCrossRefGoogle Scholar
  36. Hannemann F, Hartmann A, Schmitt J, Lützner J, Seidler A, Campbell P et al (2013) European multidisciplinary consensus statement on the use and monitoring of metal-on-metal bearings for total hip replacement and hip resurfacing. Orthop Traumatol Surg Res 99(3):263–271PubMedCrossRefGoogle Scholar
  37. Higashigaito K, Angst F, Runge VM, Alkadhi H, OF D (2015) Metal artifact reduction in pelvic computed tomography with hip prostheses: comparison of virtual monoenergetic extrapolations from dual-energy computed tomography and an iterative metal artifact reduction algorithm in a phantom study. Investig Radiol 50(12):828–834CrossRefGoogle Scholar
  38. James SLJ, Panicek DM, Davies AM (2008) Bone marrow oedema associated with benign and malignant bone tumours. Eur J Radiol 67(1):11–21PubMedCrossRefGoogle Scholar
  39. Jeong S, Kim SH, Hwang EJ, Shin C-I, Han JK, Choi BI (2015) Usefulness of a metal artifact reduction algorithm for orthopedic implants in abdominal CT: phantom and clinical study results. AJR Am J Roentgenol 204(2):307–317PubMedCrossRefGoogle Scholar
  40. Jo VY, Fletcher CDM (2014) WHO classification of soft tissue tumours: an update based on the 2013 (4th) edition. Pathology 46(2):95–104PubMedCrossRefGoogle Scholar
  41. Kalender WA, Hebel R, Ebersberger J (1987) Reduction of CT artifacts caused by metallic implants. Radiology 164(2):576–577PubMedCrossRefGoogle Scholar
  42. Koch KM, Hargreaves BA, Pauly KB, Chen W, Gold GE, King KF (2010) Magnetic resonance imaging near metal implants. J Magn Reson Imaging 32(4):773–787PubMedCrossRefGoogle Scholar
  43. Kurtz S, Ong K, Lau E, Mowat F, Halpern M (2007) Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am 89(4):780–785PubMedGoogle Scholar
  44. Kwon Y-M, Lombardi AV, Jacobs JJ, Fehring TK, Lewis CG, Cabanela ME (2014) Risk stratification algorithm for management of patients with metal-on-metal hip arthroplasty: consensus statement of the American Association of Hip and Knee Surgeons, the American Academy of Orthopaedic surgeons, and the hip society. J Bone Joint Surg Am 96(1):e4PubMedCrossRefGoogle Scholar
  45. Leavey PJ, Day MD, Booth T, Maale G (2003) Skip metastasis in osteosarcoma. J Pediatr Hematol Oncol 25(10):806–808PubMedCrossRefGoogle Scholar
  46. Lee T-Y, Chhem RK (2010) Impact of new technologies on dose reduction in CT. Eur J Radiol 76(1):28–35PubMedCrossRefGoogle Scholar
  47. Lee M-J, Kim S, Lee S-A, Song H-T, Huh Y-M, Kim D-H et al (2007) Overcoming artifacts from metallic orthopedic implants at high-field-strength MR imaging and multi-detector CT. Radiographics 27(3):791–803PubMedCrossRefGoogle Scholar
  48. Lee YH, Park KK, Song H-T, Kim S, Suh J-S (2012) Metal artefact reduction in gemstone spectral imaging dual-energy CT with and without metal artefact reduction software. Eur Radiol 22(6):1331–1340PubMedCrossRefGoogle Scholar
  49. Liu PT, Pavlicek WP, Peter MB, Spangehl MJ, Roberts CC, Paden RG (2009) Metal artifact reduction image reconstruction algorithm for CT of implanted metal orthopedic devices: a work in progress. Skelet Radiol 38(8):797–802CrossRefGoogle Scholar
  50. Machida H, Yuhara T, Tamura M, Ishikawa T, Tate E, Ueno E et al (2016) Whole-body clinical applications of digital tomosynthesis. Radiographics 36(3):735–750PubMedCrossRefGoogle Scholar
  51. Mendel T, Radetzki F, Wohlrab D, Stock K, Hofmann GO, Noser H (2013) CT-based 3-D visualisation of secure bone corridors and optimal trajectories for sacroiliac screws. Injury 44(7):957–963PubMedCrossRefGoogle Scholar
  52. Morsbach F, Bickelhaupt S, Wanner GA, Krauss A, Schmidt B, Alkadhi H (2013) Reduction of metal artifacts from hip prostheses on CT images of the pelvis: value of iterative reconstructions. Radiology 268(1):237–244PubMedCrossRefGoogle Scholar
  53. Morshed S (2014) Current options for determining fracture union. Adv Med 2014:708574PubMedPubMedCentralCrossRefGoogle Scholar
  54. Omoumi P, Rubini A, Dubuc J-E, Vande Berg BC, Lecouvet FE (2015) Diagnostic performance of CT-arthrography and 1.5 T MR-arthrography for the assessment of glenohumeral joint cartilage: a comparative study with arthroscopic correlation. Eur Radiol 25(4):961–969PubMedCrossRefGoogle Scholar
  55. Otton J, Morton G, Schuster A, Bigalke B, Marano R, Olivotti L et al (2013) A direct comparison of the sensitivity of CT and MR cardiac perfusion using a myocardial perfusion phantom. J Cardiovasc Comput Tomogr 7(2):117–124PubMedPubMedCentralCrossRefGoogle Scholar
  56. Parrish FJ (2007) Volume CT: state-of-the-art reporting. AJR Am J Roentgenol 189(3):528–534PubMedCrossRefGoogle Scholar
  57. Pessis E, Campagna R, Sverzut J-M, Bach F, Rodallec M, Guerini H et al (2013) Virtual monochromatic spectral imaging with fast kilovoltage switching: reduction of metal artifacts at CT. Radiographics 33(2):573–583PubMedCrossRefGoogle Scholar
  58. Roth TD, Maertz NA, Parr JA, Buckwalter KA, Choplin RH (2012) CT of the hip prosthesis: appearance of components, fixation, and complications. Radiographics 32(4):1089–1107PubMedCrossRefGoogle Scholar
  59. Ruggieri P, Mavrogenis AF, Mercuri M (2011) Quality of life following limb-salvage surgery for bone sarcomas. Expert Rev Pharmacoecon Outcomes Res 11(1):59–73PubMedCrossRefGoogle Scholar
  60. Sedlic A, Chingkoe CM, Tso DK, Galea-Soler S, Nicolaou S (2013) Rapid imaging protocol in trauma: a whole-body dual-source CT scan. Emerg Radiol 20(5):401–408PubMedCrossRefGoogle Scholar
  61. Tan TJ, Aljefri AM, Clarkson PW, Masri BA, Ouellette HA, Munk PL et al (2015) Imaging of limb salvage surgery and pelvic reconstruction following resection of malignant bone tumours. Eur J Radiol 84(9):1782–1790PubMedCrossRefGoogle Scholar
  62. Teixeira PAG, Chanson A, Beaumont M, Lecocq S, Louis M, Marie B et al (2013) Dynamic MR imaging of osteoid osteomas: correlation of semiquantitative and quantitative perfusion parameters with patient symptoms and treatment outcome. Eur Radiol 23:2602–2611PubMedCrossRefGoogle Scholar
  63. Teixeira PAG, Gervaise A, Louis M, Raymond A, Formery A-S, Lecocq S et al (2015a) Musculoskeletal wide-detector CT kinematic evaluation: from motion to image. Semin Musculoskelet Radiol 19(5):456–462PubMedCrossRefGoogle Scholar
  64. Teixeira PAG, Beaumont M, Gabriela H, Bailiang C, Verhaeghe J-L, Sirveaux F et al (2015b) Advanced techniques in musculoskeletal oncology: perfusion, diffusion, and spectroscopy. Semin Musculoskelet Radiol 19(5):463–474PubMedCrossRefGoogle Scholar
  65. Thomas J, Rideau AM, Paulson EK, Bisset GS (2008) Emergency department imaging: current practice. J Am Coll Radiol 5(7):811–6e2PubMedCrossRefGoogle Scholar
  66. van de Giessen M, Foumani M, Vos FM, Strackee SD, Maas M, Van Vliet LJ et al (2012) A 4D statistical model of wrist bone motion patterns. IEEE Trans Med Imaging 31(3):613–625PubMedCrossRefGoogle Scholar
  67. van der Woude HJ, Verstraete KL, Hogendoorn PC, Taminiau AH, Hermans J, Bloem JL (1998) Musculoskeletal tumors: does fast dynamic contrast-enhanced subtraction MR imaging contribute to the characterization? Radiology 208(3):821–828PubMedCrossRefGoogle Scholar
  68. van Rijswijk CSP, Geirnaerdt MJA, Hogendoorn PCW, Taminiau AHM, van Coevorden F, Zwinderman AH et al (2004) Soft-tissue tumors: value of static and dynamic gadopentetate dimeglumine-enhanced MR imaging in prediction of malignancy. Radiology 233(2):493–502PubMedCrossRefGoogle Scholar
  69. Verburg JM, Seco J (2012) CT metal artifact reduction method correcting for beam hardening and missing projections. Phys Med Biol 57(9):2803–2818PubMedCrossRefGoogle Scholar
  70. Wilson JS, Korobkin M, Genant HK, Bovill EG (1978) Computed tomography of musculoskeletal disorders. AJR Am J Roentgenol 131(1):55–61PubMedCrossRefGoogle Scholar
  71. Yu L, Pan X (2003) Half-scan fan-beam computed tomography with improved noise and resolution properties. Med Phys 30(10):2629–2637PubMedCrossRefGoogle Scholar
  72. Zhou C, Zhao YE, Luo S, Shi H, Li L, Zheng L et al (2011) Monoenergetic imaging of dual-energy CT reduces artifacts from implanted metal orthopedic devices in patients with factures. Acad Radiol 18(10):1252–1257PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Service d’Imagerie GuillozCHRU NancyNancyFrance

Personalised recommendations