Advertisement

Dysphagia pp 687-716 | Cite as

Rheological Aspects of Swallowing and Dysphagia: Shear and Elongational Flows

  • Edmundo Brito-de la Fuente
  • Mihaela Turcanu
  • Olle Ekberg
  • Críspulo Gallegos
Chapter
Part of the Medical Radiology book series (MEDRAD)

Abstract

The physiological process of swallowing is not only a simple transfer of liquids or food boluses from the oral cavity to stomach, but also a complex succession of voluntary and involuntary phases that involve complex deformations and require the entire functionality of the oropharyngeal apparatus. When this functionality is affected, people experience dysphagia, which is described as a combination of symptoms that impairs or reduces patient’s ability to swallow.

On the other hand, food texture also plays an important role in swallowing. Each liquid viscosity or bolus consistency is processed differently in the mouth and it requires a specific amount of lubrication and effort in order to be easily and safely swallowed. The science of rheology deals specifically with the deformation and the flow of matter. Therefore, rheology helps to characterise food behaviour in complex deformations, such as those encountered during swallowing. The knowledge of the deformability and flow of the bolus is particularly important in understanding and managing dysphagia.

In this chapter, a short introduction on dysphagia is given. Section “Rheology Fundamentals” is dedicated to the science of rheology and provides a short description of the material functions relevant to this field. Dysphagia-designed products are used as examples. Section “Rheology, Swallowing and Dysphagia: State-of-the-Art” focuses on the rheological aspects of bolus oral processing and transport. A practical example on how shear rheology helps to tailor new dysphagia products is also included. Aspects about the role of extensional rheology in the swallowing are introduced. This section is followed by the rheological characterisation of different nutritional products in the presence of saliva. The role of human saliva in the management of dysphagia is as well discussed. The chapter ends with some concluding remarks.

References

  1. Anna SL, McKinley GH, Nguyen DA, Sridhar T, Muller SJ, Huang J, James D (2001) An interlaboratory comparison of measurements from filament-stretching rheometers using common test fluids. J Rheol 45:83–114CrossRefGoogle Scholar
  2. Bardan E, Kern M, Arndorfer RC, Hofmann C, Shaker R (2006) Effect of aging on bolus kinematics during the pharyngeal phase of swallowing. Am J Physiol Gastrointest Liver Physiol 290:G458–G465PubMedCrossRefGoogle Scholar
  3. Barnes HA (2000) A handbook of elementary Rheology. Institute of Non-Newtonian Fluid Mechanics, University of Wales, AberystwythGoogle Scholar
  4. Battagel J, Johal A, Smith AM, Kotecha B (2002) Postural variations in oropharyngeal dimensions in subjects with sleep disordered breathing—a cephalometric study. Eur J Orthodont 24:263–276CrossRefGoogle Scholar
  5. Bird RB, Armstrong RC, Hassager O (1987) Dynamics of polymeric liquids, vol 1, 2nd edn. Wiley, New YorkGoogle Scholar
  6. Bredenoord AJ, Smout AJPM (2008) High resolution manometry. Digest Liver Dis 40:174–181CrossRefGoogle Scholar
  7. British Dietetic Association (2009) National descriptors for texture modification in adults. British Dietetic Association, BirminghamGoogle Scholar
  8. Brito-de la Fuente E, Quinchia L, Valencia C, Partal P, Franco JM, Gallegos C (2010) Rheology of a new spoon-thick consistency oral nutritional supplement (ONS) in comparison with a swallow barium test feed (SBTF). In: Proceedings Dysphagia Research Society 18th annual meeting, San Diego, CA, USA, 4–6 March 2010Google Scholar
  9. Brito-de la Fuente E, Staudinger-Prevost N, Quinchia L, Valencia C, Partal P, Franco JM, Gallegos C (2012) Design of a new spoon-thick consistency oral nutritionsupplement (ONS) using rheological similarity with a swallow barium test feed. Appl Rheol 22:53365Google Scholar
  10. Buettner A, Beer A, Hannig C, Settles M (2001) Observation of the swallowing process by applications of videfluoroscopy and real time magnetic resonance imaging—consequences for retronasal aroma stimulation. Chem Sens 26:1211–1219CrossRefGoogle Scholar
  11. Bülow M, Olsson R, Ekberg O (2003) Videoradiographic analysis of how carbonated thin liquids and thickened liquids affect the physiology of swallowing in subject with aspiration on thin liquids. Acta Radiol 44:366–372PubMedCrossRefGoogle Scholar
  12. Burbidge AS, Cichero AYJ, Engmann J, Steele CM (2016) A day in the life of the fluid bolus: An introduction to fluid mechanics of the oropharyngeal phase of swallowing with particular focus on Dysphagia. Applied Rheology 26:64525Google Scholar
  13. Cabre M, Serra-Prat M, Palomera E, Almirall J, Pallares R, Clavé P (2010) Prevalence and prognostic implications of dysphagia in elderly patients with pneumonia. Age Ageing 39(1):39–45PubMedCrossRefGoogle Scholar
  14. Carreau PJ (1972) Rheological equations from molecular network theories. Trans Soc Rheol 16:99–127CrossRefGoogle Scholar
  15. Carreau PJ, Dekee D, Chhabra RP (1997) Rheology of polymeric systems: principles and applications. Hanser, MunichGoogle Scholar
  16. Casanovas A, Hernández MJ, Martí-Bonmatí E (2011) Cluster classification of dysphagia-oriented products considering flow, thixotropy and oscillatory testing. Food Hydrocolloid 25(5):851–859CrossRefGoogle Scholar
  17. Chan PSK, Chen J, Rammile AE, Zerah AL, Stefan AA, Eddy AD, Smith AS (2007) Study of the shear and extensional rheology of casein, waxy maize starch and their mixtures. Food Hydrocolloid 21:716–725CrossRefGoogle Scholar
  18. Chen J (2009) Food oral processing—a review. Food Hydrocolloid 23:1–25CrossRefGoogle Scholar
  19. Chhabra RP, Richardson JF (1999) Non-Newtonian flow in the process industries. Butterworth-Heinemann, OxfordGoogle Scholar
  20. Chhabra RP, Richardson JF (2008) Non-Newtonian flow and applied rheology, 2nd edn. Butterworth-Heinemann, OxfordGoogle Scholar
  21. Choi H, Mitchell JR, Gaddipati SR, Hill SE, Wolf B (2014) Shear rheology and filament stretching behaviour of xanthan gum and carboxymethyl cellulose solution in presence of saliva. Food Hydrocolloid 40:71–75CrossRefGoogle Scholar
  22. Cichero JA, Steele C, Duivestein J, Clavé P, Chen J, Kayashita J, Dantas R, Lecko C, Speyer R, Lam P, Murray J (2013) The need for international terminology and definitions for texture-modified foods and thickened liquids used in dysphagia management: foundations of a global initiative. Curr Phys Med Rehabil Rep 1:280–291PubMedPubMedCentralCrossRefGoogle Scholar
  23. Cichero J, Lam P, Steele CM, Hanson B, Chen J, Dantas RO, Duivestein J et al (2017) Development of international terminology and definitions for texture-modified foods and thickened fluids used in dysphagia management: the IDDSI framework. Dysphagia 32(2):293–314PubMedCrossRefGoogle Scholar
  24. Clasen C (2010) Capillary breakup extensional rheometry of semi-dilute polymer solutions. Korea Aust Rheol J 5:331–338Google Scholar
  25. Clasen C, Plog JP, Kulicke WM, Owens M, Macosko C, Scriven LE, Verani M, McKinley GH (2006) How dilute are dilute solutions in extensional flows. J Rheol 50:849–881CrossRefGoogle Scholar
  26. Clavé P, De Kraa M, Arreola V, Girvent M, Farré R, Palomera E, Serrat-Pratt M (2006) The effect of bolus viscosity on swallowing function in neurogénica dysphagia. Aliment Pharmacol Ther 24:1385–1394PubMedCrossRefGoogle Scholar
  27. Dealy JM, Wissbrun KF (1995) Melt rheology and its role in plastic processing. Chapman and Hall, LondonGoogle Scholar
  28. Duxenneuner MR, Fischer P, Windhab EJ, Cooper-White JJ (2008) Extensional properties of hydroxypropyl ether guar gum solutions. Biomacromolecules 9:2989–2996PubMedCrossRefGoogle Scholar
  29. Ekberg O, Bülow M, Ekman S, Hall G, Stading M, Wendin K (2009) Effect of barium sulfate contrast medium on rheology and sensory texture attributes in a model food. Acta Radiol 2:131–138CrossRefGoogle Scholar
  30. Emri I (2010) Time-dependent behaviour of solid polymers. In: Gallegos C, Walters K (eds) Rheology: encyclopedia of life support systems (EOLSS), UNESCO. Eolss, Oxford, pp 247–330Google Scholar
  31. Engelen L, Fontijn-Tekamp A, van der Bilt A (2005) The influence of product and oral characteristics on swallowing. Arch Oral Biol 50:739–746PubMedCrossRefGoogle Scholar
  32. Entov VM, Hinch EJ (1997) Effect of a spectrum of relaxation times on the capillary thinning of a filament of elastic liquid. J Nonnewton Fluid Mech 72:31–53CrossRefGoogle Scholar
  33. Ferry JD (1980) Viscoelastic properties of polymers. Wiley, New YorkGoogle Scholar
  34. Foo WT, Yew HS, Liong MT, Azhar ME (2011) Influence of formulations on textural, mechanical and structural breakdown properties of cooked yellow alkaline noodles. Int Food Res J 18:1295–1301Google Scholar
  35. Frazier J, Chestnut AH, Jackson A, Barbon CEA, Steele CM, Pickler L (2016) Understanding the viscosity of liquids used in infant dysphagia management. Dysphagia 31(5):672–679PubMedPubMedCentralCrossRefGoogle Scholar
  36. Fuller G, Cathey CA, Brent H, Zebrowski BE (1987) Extensional viscosity measurements for low-viscosity fluids. J Rheol 31(3):235–250CrossRefGoogle Scholar
  37. Gallegos C, Martínez-Boza FJ (2010) Linear viscoelasticity. In: Gallegos C, Walters K (eds) Rheology: encyclopedia of life support systems (EOLSS), UNESCO. Eolss, Oxford, pp 120–143Google Scholar
  38. Gallegos C, Walters K (2010) Rheology. In: Gallegos C, Walters K (eds) Rheology: encyclopedia of life support systems (EOLSS),UNESCO. Eolss, Oxford, pp 1–14Google Scholar
  39. Gallegos C, Quinchia L, Ascanio G, Salinas-Vázquez M, Brito-de la Fuente E (2012) Rheology and dysphagia: an overview. Ann T Nord Rheol Soc 20:3–10Google Scholar
  40. Gallegos C, Brito-de la Fuente E, Clavé P, Costa A, Assegehegn G (2017) Nutritional aspects of dysphagia management, Advances in food and nutrition research, vol 81. Academic Press, Cambridge, pp 271–318Google Scholar
  41. Germain I, Dufresne T, Ramaswamy HS (2006) Rheological characterization of thickened beverages used in the treatment of dysphagia. J Food Eng 73:64–74CrossRefGoogle Scholar
  42. Hanson B (2016) A review of diet standardization and bolus rheology in the management of dysphagia. Curr Opin Otolaryngol Head Neck Surg 24(3):183–190PubMedCrossRefGoogle Scholar
  43. Hanson B, O’Leary MT, Smith CH (2012a) The effect of saliva on the viscosity of thickened drinks. Dysphagia 27:10–19PubMedCrossRefGoogle Scholar
  44. Hanson B, Cox B, Kaliviotis E, Smith CH (2012b) Effects of saliva on starch-thickened drinks with acidic and neutral pH. Dysphagia 27(3):427–435PubMedCrossRefGoogle Scholar
  45. Hasegawa A, Otogure A, Kumagai H, Nakazawa F (2005) Velocity of swallowed gel food in the pharynx by ultrasonic method. J Jpn Soc Food Sci Technol 52:441–447CrossRefGoogle Scholar
  46. Haward SJ, Odell JA, Berry M, Hall T (2011) Extensional rheology of human saliva. Rheol Acta 50:869–879CrossRefGoogle Scholar
  47. Hutchings JB, Lillford PJ (1988) The perception of food texture—the philosophy of the breakdown path. J Texture Stud 19:103–115CrossRefGoogle Scholar
  48. Ickenstein GW (2011) Diagnosis and treatment of neurogenic dysphagia. UNI-MED, BremenGoogle Scholar
  49. Imam H, Shay S, Ali A, Baker M (2005) Bolus transit patterns in healthy subjects: a study using simultaneous impedance monitoring, videoesophagram, and esophageal manometry. Am J Physiol Gastrointest Liver Physiol 288:G1000–G1006PubMedCrossRefGoogle Scholar
  50. Jaishankar A, Wee M, Matia-Merino L, Goh KKT, McKinley GH (2015) Probing hydrogen bond interactions in a shear thickening polysaccharide using nonlinear shear and extensional rheology. Carbohydr Polym 123:136–145PubMedCrossRefGoogle Scholar
  51. James DF, Walters K (1993) A critical appraisal of available methods for the measurement of extensional properties of mobile systems. In: Collyer AA (ed) Techniques in rheological measurement. Chapmann and Hall, New York, pp 33–53CrossRefGoogle Scholar
  52. Kahrilas PJ, Dodds WJ, Hogan WJ (1988) Effect of peristaltic dysfunction on esophageal volume clearance. Gastroenterology 94:73–80PubMedCrossRefGoogle Scholar
  53. Lee SH, Oh B-M, Chun SM, Lee SH, Oh B-M, Chun SM, Lee JC, Min Y, Bang S-H, Han TR (2013) The accuracy of the swallowing kinematic analysis at various movement velocities of the hyoid and epiglottis. Ann Rehabil Med 37(3):320–327PubMedPubMedCentralCrossRefGoogle Scholar
  54. Leonard RJ, White C, McKenzie S, Belafsky PC (2014) Effects of bolus rheology on aspiration in patients with dysphagia. J Acad Nutr Diet 114:590–594PubMedCrossRefGoogle Scholar
  55. Li M, Brasseur JG, Doods W (1994) Analyses of normal and abnormal esophageal transport using computer simulations. Am J Physiol Gastrointest Liver Physiol 266:G525–G543CrossRefGoogle Scholar
  56. Liang RF, Mackley MR (1994) Rheological characterization of the time and strain dependence for polyisobutylene solutions. J Nonnewton Fluid Mech 52:387–405CrossRefGoogle Scholar
  57. Mackay ME, Boger DV (1987) An explanation of the rheological properties of Boger fluids. J Nonnewton Fluid Mech 22:235–243CrossRefGoogle Scholar
  58. Mackley MR, Marshall RTJ, Smeulders JB, Zhao FD (1994) The rheological characterization of polymeric and colloidal fluids. Chem Eng Sci 49:2551–2565CrossRefGoogle Scholar
  59. Mackley MR, Tock C, Anthony R, Butler SA, Chapman G, Vadillo DC (2013) The rheology and processing behavior of starch and gum-based dysphagia thickeners. J Rheol 57:1533CrossRefGoogle Scholar
  60. Macosko CW (1994) Rheology principles, measurements and applications. VCH, New YorkGoogle Scholar
  61. Madiedo JM, Gallegos C (1997a) Rheological characterization of oil-in-water emulsions by means of relaxation and retardation spectra. Recent Res Devel Oil Chem 1:79–90Google Scholar
  62. Madiedo JM, Gallegos C (1997b) Rheological characterization of oil-in-water food emulsions by means of relaxation and retardation spectra. Appl Rheol 7:161–167Google Scholar
  63. McKinley GH, Tripathi A (2000) How to extract the Newtonian viscosity from capillary breakup measurements in a filament rheometer. J Rheol 44:653CrossRefGoogle Scholar
  64. McKinley GH, Anna SL, Tripathi A, Yao M (1999) Extensional rheometry of polymeric fluids and the uniaxial elongation of viscoelastic filaments. Int Polym Proc Soc:1–14Google Scholar
  65. Meng Y, Rao MA, Datta AK (2005) Computer simulation of the pharyngeal bolus transport of Newtonian and non-Newtonian fluids. Food Bioprod Proc 83:297–305CrossRefGoogle Scholar
  66. Miller E, Clasen C, Rothstein JP (2009) The effect of step-stretch parameters on capillary breakup extensional rheology (CaBER) measurements. Rheol Acta 48:625–639CrossRefGoogle Scholar
  67. Mizunuma H, Sonomura M, Shimokasa K, Ogoshp H, Nakamura S, Tayama N (2009) Numerical modelling and simulation on the swallowing of jelly. J Text Stud 40:406–426CrossRefGoogle Scholar
  68. Morell Esteve P, Hernando MI, Fiszman MS (2014) Understanding the relevance of in-mouth food processing. A review of in vitro techniques. Trends Food Sci Technol 35:18–31CrossRefGoogle Scholar
  69. National Dysphagia Diet Task Force (2002) National dysphagia diet: standardization for optimal care. American Dietetic Association, ChicagoGoogle Scholar
  70. Newman R, Vilardell N, Clavé P, Speyer R (2016) Effect of bolus viscosity on the safety and efficacy of swallowing and the kinematics of the swallow response in patients with oropharyngeal dysphagia: white paper by the european society for swallowing disorders (ESSD). Dysphagia 31:232–249PubMedPubMedCentralCrossRefGoogle Scholar
  71. Nguyen HN, Silny J, Albers D, Roeb E, Gartung C, Rau G, Metern S (1997) Dynamics of esophageal bolus transport in heathy subjects studied using multiple intraluminal impedancometry. Am J Physiol Gastrointest Liver Physiol 273:G958–G964CrossRefGoogle Scholar
  72. Nicosia MA, Robbins J (2001) The fluid mechanics of bolus ejection from the oral cavity. J Biomech 34:1537–1544PubMedCrossRefGoogle Scholar
  73. Nyström M (2015) Extensional rheometry through hyperbolic contraction. PhD dissertation, Chalmers University of TechnologyGoogle Scholar
  74. Nyström M, Waqas M, Bulow M, Ekberg O, Stading M (2015) Effects of rheological factors on perceived ease of swallowing. Appl Rheol 25:63876Google Scholar
  75. O’Leary M, Hanson B, Smith C (2010) Viscosity and non-Newtonian features of thickened fluids used for dysphagia therapy. J Food Sci 75(6):E330–E338PubMedCrossRefGoogle Scholar
  76. Oliveira MSN, Yeh R, McKinley GH (2006) Iterated stretching, extensional rheology and formation of beads-on-a-string structures in polymer solutions. J Nonnewton Fluid Mech 137:137–148CrossRefGoogle Scholar
  77. Omari TI, Rommel N, Szczesniak M, Fuentealba S, Dinning P, Davidson G, Cook I (2006) Assessment of intraluminal impedance for the detection of pharyngeal bolus flow during swallowing in healthy adults. Am J Physiol Gastrointest Liver Physiol 290:G183–G188PubMedCrossRefGoogle Scholar
  78. Ould-Eleya M, Gunasekaran S (2007) Rheology of barium sulfate suspensions and pre-thickened beverages used in diagnosis and treatment of dysphagia. Appl Rheol 17:33137-1–33137-8Google Scholar
  79. Papageorgiou DT (1995) On the breakup of viscous-liquid threads. Phys Fluids 7(7):1529–1544CrossRefGoogle Scholar
  80. Partal P, Franco JM (2010) Non-Newtonian fluids. In: Gallegos C, Walters K (eds) Rheology: encyclopedia of life support systems (EOLSS), UNESCO. Eolss, Oxford, pp 96–119Google Scholar
  81. Patruyo L, Muller A, Saez A (2002) Shear and extensional rheology of solutions of modified hydroxyethyl celluloses and sodium dodecyl sulphate. Polymer 43:6481–6493CrossRefGoogle Scholar
  82. Penman JP, Thomson M (1998) A review of the textured diets developed for the management of dysphagia. J Human Nutr Diet 11:51–60CrossRefGoogle Scholar
  83. Petrie CJS (2006a) Extensional viscosity: a critical discussion. J Nonnewton Fluid Mech 137:15–23CrossRefGoogle Scholar
  84. Petrie CJS (2006b) One hundred years of extensional flow. J Nonnewton Fluid Mech 137:1–14CrossRefGoogle Scholar
  85. Phan-Thien N (2002) Understanding viscoelasticity: basics of rheology. Springer, BerlinCrossRefGoogle Scholar
  86. Popa Nita S, Murith M, Chisholm H, Engmann J (2013) Matching the rheological properties of videofluoroscopic contrast agents and thickened liquid prescriptions. Dysphagia 28(2):245–252PubMedPubMedCentralCrossRefGoogle Scholar
  87. Prinz JF, Lucas PW (1997) An optimization model for mastication and swallowing in mammals. Proc Biol Sci 264:1715–1721PubMedPubMedCentralCrossRefGoogle Scholar
  88. Quinchia LA, Valencia C, Partal P, Franco JM, Brito-de la Fuente E, Gallegos C (2011) Linear and non-linear viscoelasticity of puddings for nutritional management of dysphagia. Food Hydrocolloid 25:586–593CrossRefGoogle Scholar
  89. Reiner M (1964) The Deborah number. Phys Today 17:62CrossRefGoogle Scholar
  90. Reyes-Ocampo I, Aguayo-Vallejo JP, Ascanio G, Córdova-Aguilar MS (2017) Rheological characterization of modified foodstuffs with food grade thickening agents. J Phys Conf Ser 790:012028CrossRefGoogle Scholar
  91. Rodd LE, Scott TP, Boger DV, Cooper-White JJ, McKinley GH (2005) The inertio-elastic planar entry flow of low-viscosity elastic fluids in micro fabricated geometries. J Non-Newtonian Fluid Mech 129:1–22CrossRefGoogle Scholar
  92. Rolón-Garrido V, Wagner M (2009) The damping function in rheology. Rheol Acta 48:245–284CrossRefGoogle Scholar
  93. Sachsenheimer D (2014) Capillary thinning of viscoelastic fluid filaments. PhD dissertation, Karlsruhe Institute of TechnologyGoogle Scholar
  94. Sajjadi B, Raman AAA, Shah RSSRE, Ibrahim S (2013) Review on applicable breakup/coalescence models in turbulent liquid-liquid flows. Rev Chem Eng 29:131–158CrossRefGoogle Scholar
  95. Sopade PA, Halley PJ, Cichero JAY, Ward LC (2007) Rheological characterisation of food thickeners marketed in Australia in various media for the management of dysphagia. I: water and cordial. J Food Eng 79:69–82Google Scholar
  96. Sridhar T, Tirtaatmadja V, Nguyen DA, Gupta RK (1991) Measurement of extensional viscosity of polymer solutions. J Non-Newtonian Fluid Mech 40:271–280CrossRefGoogle Scholar
  97. Srinivasan R, Vela MF, Kartz PO, Tutuian R, Castell JA, Castell DO (2001) Esophageal function testing using multichannel intraluminal impredance. Am J Physiol Gastrointest Liver Physiol 280:G457–G462PubMedCrossRefGoogle Scholar
  98. Stading M, Johansson D, Wendin K (2008) Rheological properties of food for patients with swallowing disorders. Annu Trans Nord Rheol Soc 16:5401Google Scholar
  99. Steele CM (2005) Searching for meaningful differences in viscosity. Dysphagia 20:336–338PubMedCrossRefGoogle Scholar
  100. Steele CM, Cichero JA (2008) A question of rheological control. Dysphagia 23:199–201PubMedCrossRefGoogle Scholar
  101. Steele CM, Lieshout PHHM, Goff HD (2003) The rheology of liquids: a comparison of clinician’s subjective impression and objective measurement. Dysphagia 18:182–195PubMedCrossRefGoogle Scholar
  102. Steele CM, Molfenter SM, Péladeau-Pigeon M, Stokely S (2013) Challenges in preparing contrast media for videofluoroscopy. Dysphagia 28(3):464–467PubMedPubMedCentralCrossRefGoogle Scholar
  103. Steele CM, Alsanei WA, Ayanikalath S, Barbon CEA, Chen J, Chichero JA (2015) The influence of food textures and liquid consistency modification on swallowing physiology and function: a systematic review. Dysphagia 30:2–26PubMedCrossRefGoogle Scholar
  104. Takasaki K, Umeki H, Enatsu K, Tanaka F, Sakihama N, Kumagami H, Takahashi H (2008) Investigation of pharyngeal swallowing function using high-resolution manometry. Laryngoscope 118(10):1729–1732PubMedCrossRefGoogle Scholar
  105. Tirtaatmadja V, Sridhar T (1993) A filament stretching device for measurement of extensional viscosity. J Rheol 37:1081–1102CrossRefGoogle Scholar
  106. Tirtaatmadja V, McKinley GH, Cooper-White JJ (2006) Drop formation and breakup of low viscosity elastic fluids: effects of molecular weight and concentration. Phys Fluids 18:043101CrossRefGoogle Scholar
  107. Torres MD, Hallmark B, Wilson DI (2014) Effect of concentration on shear and extensional rheology of guar gum solutions. Food Hydrocolloid 40:85–95CrossRefGoogle Scholar
  108. Trouton FT (1906) On the coefficient of viscous traction and its relation to that of viscosity. Proc R Soc A 77:426–439CrossRefGoogle Scholar
  109. Turcanu M (2017) Rheological characterization and modelling of fluids used in biomedical engineering. PhD dissertation, Politehnica University of BucharestGoogle Scholar
  110. Turcanu M, Tascon LF, Balan C, Gallegos C (2015a) Capillary breakup extensional properties of whole human saliva. In: 9th International Symposium on Advanced Topics in Electrical Engineering 269–274Google Scholar
  111. Turcanu M, Siegert N, Tascon LF, Omocea I, Balan C, Gallegos C, Brito-de la Fuente E (2015b) The role of human saliva on the elongational properties of a starch-based food product. Proceedings of E-Health and Bioengineering Conference (EHB) 1–4Google Scholar
  112. Wagner MH (1979) Zur Netzwerktheorie von Polymer-Schmelzen. Rheol Acta 18:33–50CrossRefGoogle Scholar
  113. Walters K (2010) History of rheology. In: Gallegos C, Walters K (eds) Rheology: encyclopedia of life support systems (EOLSS), UNESCO. Eolss, Oxford, pp 15–30Google Scholar
  114. Waqas MQ, Wiklund J, Altskär A, Ekberg O, Stading M (2017) Shear and extensional rheology of commercial thickeners used for dysphagia management. J Texture Stud 00:1–11. doi: 10.1111/jtxs.12264 CrossRefGoogle Scholar
  115. Williams RB, Pal A, Brasseur G, Cook I (2001) Space-time pressure structure of pharyngo-esophageal segment during swallowing. Am J Gastrointest Liver Physiol 281:G1290–G1300CrossRefGoogle Scholar
  116. Zargaraan A, Rastmanesh R, Fadavi G, Zayeri F, Mohammadifar MA (2013) Rheological aspects of dysphagia-oriented food products: a mini review. Food Sci Hum Wellness 2:173–178CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Edmundo Brito-de la Fuente
    • 1
  • Mihaela Turcanu
    • 1
  • Olle Ekberg
    • 2
  • Críspulo Gallegos
    • 1
  1. 1.Product & Process Engineering Center Global Manufacturing Pharmaceuticals-Pharmaceuticals DivisionFresenius Kabi Deutschland GmbHBad HomburgGermany
  2. 2.Department of Clinical Sciences, Medical RadiologyShane University Hospital, Lund UniversityMalmöSweden

Personalised recommendations