• Colette J. Shen
  • Stephanie A. TerezakisEmail author
Part of the Medical Radiology book series (MEDRAD)


While radiation therapy alone was historically used in the early management of both Hodgkin and non-Hodgkin lymphoma, the advent of effective systemic therapy shifted the treatment paradigm toward combined modality therapy. Despite substantial evidence establishing the importance of radiation therapy in local control for both Hodgkin and non-Hodgkin lymphoma, controversy surrounding its use in certain patient populations still exists, in large part, because of concerns of late toxicity resulting in morbidity and mortality in lymphoma survivors. In response, significant efforts have been made to refine the delivery of radiation therapy in the combined modality setting such that toxicity is minimized while still preserving disease control. Advances in imaging and treatment delivery, including use of 3D conformal therapy, intensity-modulated radiation therapy, and proton therapy, have allowed for more conformal radiotherapy delivered to smaller fields with lower doses. At the same time, efforts to identify which patients would benefit most from radiation therapy, using risk stratification and response-based assessment, are providing further guidance on the development of individually tailored treatment regimens that incorporate radiotherapy in the most beneficial manner. Continued investigation on radiation field size, dose, and advanced delivery techniques is needed to ensure clinical efficacy is not compromised with treatment de-intensification and increased conformality.


  1. Aleman BM, Raemaekers JM, Tirelli U et al (2003) Involved-field radiotherapy for advanced Hodgkin’s lymphoma. N Engl J Med 348(24):2396–2406. doi: 10.1056/NEJMoa022628CrossRefPubMedGoogle Scholar
  2. Ansell SM (2015a) Hodgkin lymphoma: diagnosis and treatment. Mayo Clin Proc 90(11):1574–1583. doi: 10.1016/j.mayocp.2015.07.005CrossRefPubMedGoogle Scholar
  3. Ansell SM (2015b) Non-Hodgkin lymphoma: diagnosis and treatment. Mayo Clin Proc 90(8):1152–1163. doi: 10.1016/j.mayocp.2015.04.025CrossRefPubMedGoogle Scholar
  4. Arakelyan N, Jais JP, Delwail V et al (2010) Reduced versus full doses of irradiation after 3 cycles of combined doxorubicin, bleomycin, vinblastine, and dacarbazine in early stage Hodgkin lymphomas: results of a randomized trial. Cancer 116(17):4054–4062. doi: 10.1002/cncr.25295CrossRefPubMedGoogle Scholar
  5. Archambeau JO, Bennett GW, Levine GS et al (1974) Proton radiation therapy. Radiology 110(2):445–457. doi: 10.1148/110.2.445CrossRefPubMedGoogle Scholar
  6. Aviles A, Delgado S (1998) A prospective clinical trial comparing chemotherapy, radiotherapy and combined therapy in the treatment of early stage Hodgkin’s disease with bulky disease. Clin Lab Haematol 20(2):95–99CrossRefGoogle Scholar
  7. Bonadonna G, Bonfante V, Viviani S et al (2004) ABVD plus subtotal nodal versus involved-field radiotherapy in early-stage Hodgkin’s disease: long-term results. J Clin Oncol 22(14):2835–2841. doi: 10.1200/JCO.2004.12.170CrossRefPubMedGoogle Scholar
  8. Bonnet C, Fillet G, Mounier N et al (2007) CHOP alone compared with CHOP plus radiotherapy for localized aggressive lymphoma in elderly patients: a study by the Groupe d’Etude des Lymphomes de l’Adulte. J Clin Oncol 25(7):787–792. doi:JCO.2006.07.0722 [pii]CrossRefGoogle Scholar
  9. Campbell BA, Voss N, Pickles T et al (2008) Involved-nodal radiation therapy as a component of combination therapy for limited-stage Hodgkin’s lymphoma: a question of field size. J Clin Oncol 26(32):5170–5174. doi: 10.1200/JCO.2007.15.1001CrossRefPubMedGoogle Scholar
  10. Campbell BA, Connors JM, Gascoyne RD et al (2012) Limited-stage diffuse large B-cell lymphoma treated with abbreviated systemic therapy and consolidation radiotherapy: involved-field versus involved-node radiotherapy. Cancer 118(17):4156–4165. doi: 10.1002/cncr.26687CrossRefPubMedGoogle Scholar
  11. Canellos GP, Abramson JS, Fisher DC et al (2010) Treatment of favorable, limited-stage Hodgkin’s lymphoma with chemotherapy without consolidation by radiation therapy. J Clin Oncol 28(9):1611–1615. doi: 10.1200/JCO.2009.25.3260CrossRefPubMedGoogle Scholar
  12. Chung CS, Yock TI, Nelson K et al (2013) Incidence of second malignancies among patients treated with proton versus photon radiation. Int J Radiat Oncol Biol Phys 87(1):46–52. doi: 10.1016/j.ijrobp.2013.04.030CrossRefPubMedGoogle Scholar
  13. (2014) Fludeoxyglucose F 18 PET scan-guided therapy or standard therapy in treating patients with previously untreated stage I or stage II Hodgkin’s lymphoma (H10). (13 June 2014). Accessed 29 Feb 2016
  14. (2015) HD18 for advanced stages in Hodgkins lymphoma. (30 Oct 2015). Accessed 29 Feb 2016
  15. (2016a) HD16 for early stage Hodgkin lymphoma (HD16). (27 Jan 2016). Accessed 29 Feb 2016
  16. (2016b) Rituximab and combination chemotherapy with or without radiation therapy in treating patients with B-cell non-Hodgkin’s lymphoma. (20 Jan 2016). Accessed 29 Feb 2016
  17. Coiffier B, Thieblemont C, Van Den Neste E et al (2010) Long-term outcome of patients in the LNH-98.5 trial, the first randomized study comparing rituximab-CHOP to standard CHOP chemotherapy in DLBCL patients: a study by the Groupe d’Etudes des Lymphomes de l’Adulte. Blood 116(12):2040–2045. doi: 10.1182/blood-2010-03-276246CrossRefPubMedPubMedCentralGoogle Scholar
  18. Crump M, Herst J, Baldassarre F et al (2015) Evidence-based focused review of the role of radiation therapy in the treatment of early-stage Hodgkin lymphoma. Blood 125(11):1708–1716. doi: 10.1182/blood-2014-08-545152CrossRefPubMedGoogle Scholar
  19. Dabaja BS, Advani R, Hodgson DC et al (2015a) ACR appropriateness Criteria(R) diffuse large B-cell lymphoma. Am J Clin Oncol 38(6):610–620. doi: 10.1097/COC.0000000000000215CrossRefPubMedGoogle Scholar
  20. Dabaja BS, Vanderplas AM, Crosby-Thompson AL et al (2015b) Radiation for diffuse large B-cell lymphoma in the rituximab era: analysis of the National Comprehensive Cancer Network lymphoma outcomes project. Cancer 121(7):1032–1039. doi: 10.1002/cncr.29113CrossRefPubMedGoogle Scholar
  21. De Bruin ML, Sparidans J, van’t Veer MB et al (2009) Breast cancer risk in female survivors of Hodgkin’s lymphoma: lower risk after smaller radiation volumes. J Clin Oncol 27(26):4239–4246. doi: 10.1200/JCO.2008.19.9174CrossRefPubMedGoogle Scholar
  22. Devillier R, Coso D, Castagna L et al (2012) Positron emission tomography response at the time of autologous stem cell transplantation predicts outcome of patients with relapsed and/or refractory Hodgkin’s lymphoma responding to prior salvage therapy. Haematologica 97(7):1073–1079. doi: 10.3324/haematol.2011.056051CrossRefPubMedPubMedCentralGoogle Scholar
  23. Dores GM, Metayer C, Curtis RE et al (2002) Second malignant neoplasms among long-term survivors of Hodgkin’s disease: a population-based evaluation over 25 years. J Clin Oncol 20(16):3484–3494CrossRefGoogle Scholar
  24. Dorth JA, Prosnitz LR, Broadwater G et al (2012) Impact of consolidation radiation therapy in stage III-IV diffuse large B-cell lymphoma with negative post-chemotherapy radiologic imaging. Int J Radiat Oncol Biol Phys 84(3):762–767. doi: 10.1016/j.ijrobp.2011.12.067CrossRefPubMedGoogle Scholar
  25. Eich HT, Muller RP, Engenhart-Cabillic R et al (2008) Involved-node radiotherapy in early-stage Hodgkin’s lymphoma. Definition and guidelines of the German Hodgkin Study Group (GHSG). Strahlenther Onkol 184(8):406–410CrossRefGoogle Scholar
  26. Eich HT, Diehl V, Gorgen H et al (2010) Intensified chemotherapy and dose-reduced involved-field radiotherapy in patients with early unfavorable Hodgkin’s lymphoma: final analysis of the German Hodgkin Study Group HD11 trial. J Clin Oncol 28(27):4199–4206. doi: 10.1200/JCO.2010.29.8018CrossRefPubMedGoogle Scholar
  27. Engert A, Schiller P, Josting A et al (2003) Involved-field radiotherapy is equally effective and less toxic compared with extended-field radiotherapy after four cycles of chemotherapy in patients with early-stage unfavorable Hodgkin’s lymphoma: results of the HD8 trial of the German Hodgkin’s Lymphoma Study Group. J Clin Oncol 21(19):3601–3608. doi: 10.1200/JCO.2003.03.023CrossRefPubMedGoogle Scholar
  28. Engert A, Plutschow A, Eich HT et al (2010) Reduced treatment intensity in patients with early-stage Hodgkin’s lymphoma. N Engl J Med 363(7):640–652. doi: 10.1056/NEJMoa1000067CrossRefPubMedGoogle Scholar
  29. Engert A, Haverkamp H, Kobe C et al (2012) Reduced-intensity chemotherapy and PET-guided radiotherapy in patients with advanced stage Hodgkin’s lymphoma (HD15 trial): a randomised, open-label, phase 3 non-inferiority trial. Lancet 379(9828):1791–1799. doi: 10.1016/S0140-6736(11)61940-5CrossRefPubMedGoogle Scholar
  30. Fabian CJ, Mansfield CM, Dahlberg S et al (1994) Low-dose involved field radiation after chemotherapy in advanced Hodgkin disease. A Southwest Oncology Group randomized study. Ann Intern Med 120(11):903–912CrossRefGoogle Scholar
  31. Ferme C, Eghbali H, Meerwaldt JH et al (2007) Chemotherapy plus involved-field radiation in early-stage Hodgkin’s disease. N Engl J Med 357(19):1916–1927. doi:357/19/1916 [pii]CrossRefGoogle Scholar
  32. Feugier P, Van Hoof A, Sebban C et al (2005) Long-term results of the R-CHOP study in the treatment of elderly patients with diffuse large B-cell lymphoma: a study by the Groupe d’Etude des Lymphomes de l’Adulte. J Clin Oncol 23(18):4117–4126. doi:JCO.2005.09.131 [pii]CrossRefGoogle Scholar
  33. Filippi AR, Ciammella P, Piva C et al (2014) Involved-site image-guided intensity modulated versus 3D conformal radiation therapy in early stage supradiaphragmatic Hodgkin lymphoma. Int J Radiat Oncol Biol Phys 89(2):370–375. doi: 10.1016/j.ijrobp.2014.01.041CrossRefPubMedGoogle Scholar
  34. Franklin J, Pluetschow A, Paus M et al (2006) Second malignancy risk associated with treatment of Hodgkin’s lymphoma: meta-analysis of the randomised trials. Ann Oncol 17(12):1749–1760. doi:mdl302 [pii]CrossRefGoogle Scholar
  35. Friedberg JW, Fischman A, Neuberg D et al (2004) FDG-PET is superior to gallium scintigraphy in staging and more sensitive in the follow-up of patients with de novo Hodgkin lymphoma: a blinded comparison. Leuk Lymphoma 45(1):85–92CrossRefGoogle Scholar
  36. Friedman DL, Chen L, Wolden S et al (2014) Dose-intensive response-based chemotherapy and radiation therapy for children and adolescents with newly diagnosed intermediate-risk hodgkin lymphoma: a report from the Children’s Oncology Group Study AHOD0031. J Clin Oncol 32(32):3651–3658. doi: 10.1200/JCO.2013.52.5410CrossRefPubMedPubMedCentralGoogle Scholar
  37. Furth C, Steffen IG, Amthauer H et al (2009) Early and late therapy response assessment with [18F]fluorodeoxyglucose positron emission tomography in pediatric Hodgkin’s lymphoma: analysis of a prospective multicenter trial. J Clin Oncol 27(26):4385–4391. doi: 10.1200/JCO.2008.19.7814CrossRefPubMedGoogle Scholar
  38. Gallamini A, Hutchings M, Rigacci L et al (2007) Early interim 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography is prognostically superior to international prognostic score in advanced-stage Hodgkin’s lymphoma: a report from a joint Italian-Danish study. J Clin Oncol 25(24):3746–3752. doi:JCO.2007.11.6525 [pii]CrossRefGoogle Scholar
  39. Gallamini A, Barrington SF, Biggi A et al (2014) The predictive role of interim positron emission tomography for Hodgkin lymphoma treatment outcome is confirmed using the interpretation criteria of the Deauville five-point scale. Haematologica 99(6):1107–1113. doi: 10.3324/haematol.2013.103218CrossRefPubMedPubMedCentralGoogle Scholar
  40. Girinsky T, van der Maazen R, Specht L et al (2006) Involved-node radiotherapy (INRT) in patients with early Hodgkin lymphoma: concepts and guidelines. Radiother Oncol 79(3):270–277. doi:S0167-8140(06)00204-0 [pii]CrossRefGoogle Scholar
  41. Girinsky T, Ghalibafian M, Bonniaud G et al (2007) Is FDG-PET scan in patients with early stage Hodgkin lymphoma of any value in the implementation of the involved-node radiotherapy concept and dose painting? Radiother Oncol 85(2):178–186. doi:S0167-8140(07)00349-0 [pii]CrossRefGoogle Scholar
  42. Girinsky T, Specht L, Ghalibafian M et al (2008) The conundrum of Hodgkin lymphoma nodes: to be or not to be included in the involved node radiation fields. The EORTC-GELA lymphoma group guidelines. Radiother Oncol 88(2):202–210. doi: 10.1016/j.radonc.2008.05.012CrossRefPubMedGoogle Scholar
  43. Girinsky T, Auperin A, Ribrag V et al (2014) Role of FDG-PET in the implementation of involved-node radiation therapy for Hodgkin lymphoma patients. Int J Radiat Oncol Biol Phys 89(5):1047–1052. doi: 10.1016/j.ijrobp.2014.04.026CrossRefPubMedGoogle Scholar
  44. Goodman KA, Toner S, Hunt M et al (2005) Intensity-modulated radiotherapy for lymphoma involving the mediastinum. Int J Radiat Oncol Biol Phys 62(1):198–206. doi:S0360-3016(04)02469-1 [pii]CrossRefGoogle Scholar
  45. Habermann TM, Weller EA, Morrison VA et al (2006) Rituximab-CHOP versus CHOP alone or with maintenance rituximab in older patients with diffuse large B-cell lymphoma. J Clin Oncol 24(19):3121–3127. doi:JCO.2005.05.1003 [pii]CrossRefGoogle Scholar
  46. Held G, Murawski N, Ziepert M et al (2014) Role of radiotherapy to bulky disease in elderly patients with aggressive B-cell lymphoma. J Clin Oncol 32(11):1112–1118. doi: 10.1200/JCO.2013.51.4505CrossRefPubMedGoogle Scholar
  47. Herbst C, Rehan FA, Skoetz N et al (2011) Chemotherapy alone versus chemotherapy plus radiotherapy for early stage Hodgkin lymphoma. Cochrane Database Syst Rev 2:CD007110. doi(2):CD007110.  10.1002/14651858.CD007110.pub2
  48. Hodgson DC, Gilbert ES, Dores GM et al (2007) Long-term solid cancer risk among 5-year survivors of Hodgkin’s lymphoma. J Clin Oncol 25(12):1489–1497. doi:JCO.2006.09.0936 [pii]CrossRefGoogle Scholar
  49. Hoppe RT (2013) Evolution of the techniques of radiation therapy in the management of lymphoma. Int J Clin Oncol 18(3):359–363. doi: 10.1007/s10147-013-0556-3CrossRefPubMedGoogle Scholar
  50. Hoppe BS, Hoppe RT (2015) Expert radiation oncologist interpretations of involved-site radiation therapy guidelines in the management of Hodgkin lymphoma. Int J Radiat Oncol Biol Phys 92(1):40–45. doi: 10.1016/j.ijrobp.2015.02.008CrossRefPubMedGoogle Scholar
  51. Hoppe BS, Flampouri S, Su Z et al (2012) Consolidative involved-node proton therapy for Stage IA-IIIB mediastinal Hodgkin lymphoma: preliminary dosimetric outcomes from a Phase II study. Int J Radiat Oncol Biol Phys 83(1):260–267. doi: 10.1016/j.ijrobp.2011.06.1959CrossRefPubMedGoogle Scholar
  52. Hoppe BS, Flampouri S, Zaiden R et al (2014) Involved-node proton therapy in combined modality therapy for Hodgkin lymphoma: results of a phase 2 study. Int J Radiat Oncol Biol Phys 89(5):1053–1059. doi: 10.1016/j.ijrobp.2014.04.029CrossRefPubMedGoogle Scholar
  53. Horning SJ, Weller E, Kim K et al (2004) Chemotherapy with or without radiotherapy in limited-stage diffuse aggressive non-Hodgkin’s lymphoma: Eastern Cooperative Oncology Group study 1484. J Clin Oncol 22(15):3032–3038. doi: 10.1200/JCO.2004.06.088CrossRefPubMedGoogle Scholar
  54. Hutchings M, Loft A, Hansen M et al (2006) FDG-PET after two cycles of chemotherapy predicts treatment failure and progression-free survival in Hodgkin lymphoma. Blood 107(1):52–59. doi:2005-06-2252 [pii]CrossRefGoogle Scholar
  55. Illidge T, Specht L, Yahalom J et al (2014) Modern radiation therapy for nodal non-Hodgkin lymphoma-target definition and dose guidelines from the International Lymphoma Radiation Oncology Group. Int J Radiat Oncol Biol Phys 89(1):49–58. doi: 10.1016/j.ijrobp.2014.01.006CrossRefPubMedGoogle Scholar
  56. Jabbour E, Hosing C, Ayers G et al (2007) Pretransplant positive positron emission tomography/gallium scans predict poor outcome in patients with recurrent/refractory Hodgkin lymphoma. Cancer 109(12):2481–2489. doi: 10.1002/cncr.22714CrossRefPubMedGoogle Scholar
  57. Johnson PW, Sydes MR, Hancock BW et al (2010) Consolidation radiotherapy in patients with advanced Hodgkin’s lymphoma: survival data from the UKLG LY09 randomized controlled trial (ISRCTN97144519). J Clin Oncol 28(20):3352–3359. doi: 10.1200/JCO.2009.26.0323CrossRefPubMedGoogle Scholar
  58. Kamath SS, Marcus RB Jr, Lynch JW et al (1999) The impact of radiotherapy dose and other treatment-related and clinical factors on in-field control in stage I and II non-Hodgkin’s lymphoma. Int J Radiat Oncol Biol Phys 44(3):563–568. doi:S0360-3016(99)00051-6 [pii]CrossRefGoogle Scholar
  59. Kasamon Y (2009) Hodgkin’s lymphoma. In: Ettinger DS, Donehower RC, Olsen M et al (eds) Current cancer therapeutics, 5th edn. Current Medicine Group LLC, New York, p 341Google Scholar
  60. Kasamon YL (2011) Prognostication and risk-adapted therapy of Hodgkin’s lymphoma using positron emission tomography. Adv Hematol 2011:271595. doi: 10.1155/2011/271595CrossRefPubMedGoogle Scholar
  61. Klimm B, Eich HT, Haverkamp H et al (2007) Poorer outcome of elderly patients treated with extended-field radiotherapy compared with involved-field radiotherapy after chemotherapy for Hodgkin’s lymphoma: an analysis from the German Hodgkin Study Group. Ann Oncol 18(2):357–363. doi:mdl379 [pii]CrossRefGoogle Scholar
  62. Koeck J, Abo-Madyan Y, Lohr F et al (2012) Radiotherapy for early mediastinal Hodgkin lymphoma according to the German Hodgkin Study Group (GHSG): the roles of intensity-modulated radiotherapy and involved-node radiotherapy. Int J Radiat Oncol Biol Phys 83(1):268–276. doi: 10.1016/j.ijrobp.2011.05.054CrossRefPubMedGoogle Scholar
  63. Kung FH, Schwartz CL, Ferree CR et al (2006) POG 8625: a randomized trial comparing chemotherapy with chemoradiotherapy for children and adolescents with Stages I, IIA, IIIA1 Hodgkin Disease: a report from the Children’s Oncology Group. J Pediatr Hematol Oncol 28(6):362–368. doi:00043426-200606000-00008 [pii]CrossRefGoogle Scholar
  64. Laskar S, Gupta T, Vimal S et al (2004) Consolidation radiation after complete remission in Hodgkin’s disease following six cycles of doxorubicin, bleomycin, vinblastine, and dacarbazine chemotherapy: is there a need? J Clin Oncol 22(1):62–68. doi: 10.1200/JCO.2004.01.021CrossRefPubMedGoogle Scholar
  65. Li J, Dabaja B, Reed V et al (2011) Rationale for and preliminary results of proton beam therapy for mediastinal lymphoma. Int J Radiat Oncol Biol Phys 81(1):167–174. doi: 10.1016/j.ijrobp.2010.05.007CrossRefPubMedGoogle Scholar
  66. Loeffler M, Brosteanu O, Hasenclever D et al (1998) Meta-analysis of chemotherapy versus combined modality treatment trials in Hodgkin’s disease. International Database on Hodgkin’s Disease Overview Study Group. J Clin Oncol 16(3):818–829CrossRefGoogle Scholar
  67. Lowry L, Smith P, Qian W et al (2011) Reduced dose radiotherapy for local control in non-Hodgkin lymphoma: a randomised phase III trial. Radiother Oncol 100(1):86–92. doi: 10.1016/j.radonc.2011.05.013CrossRefPubMedGoogle Scholar
  68. Macdonald DA, Ding K, Gospodarowicz MK et al (2007) Patterns of disease progression and outcomes in a randomized trial testing ABVD alone for patients with limited-stage Hodgkin lymphoma. Ann Oncol 18(10):1680–1684. doi:mdm287 [pii]CrossRefGoogle Scholar
  69. Maraldo MV, Aznar MC, Vogelius IR et al (2013) Involved node radiation therapy: an effective alternative in early-stage Hodgkin lymphoma. Int J Radiat Oncol Biol Phys 85(4):1057–1065. doi: 10.1016/j.ijrobp.2012.08.041CrossRefPubMedGoogle Scholar
  70. Meyer RM, Hoppe RT (2012) Point/counterpoint: early-stage Hodgkin lymphoma and the role of radiation therapy. Blood 120(23):4488–4495. doi: 10.1182/blood-2012-05-423236CrossRefPubMedPubMedCentralGoogle Scholar
  71. Meyer RM, Gospodarowicz MK, Connors JM et al (2005) Randomized comparison of ABVD chemotherapy with a strategy that includes radiation therapy in patients with limited-stage Hodgkin’s lymphoma: National Cancer Institute of Canada Clinical Trials Group and the Eastern Cooperative Oncology Group. J Clin Oncol 23(21):4634–4642. doi:JCO.2005.09.085 [pii]CrossRefGoogle Scholar
  72. Meyer RM, Gospodarowicz MK, Connors JM et al (2012) ABVD alone versus radiation-based therapy in limited-stage Hodgkin’s lymphoma. N Engl J Med 366(5):399–408. doi: 10.1056/NEJMoa1111961CrossRefPubMedGoogle Scholar
  73. Miller TP, Dahlberg S, Cassady JR et al (1998) Chemotherapy alone compared with chemotherapy plus radiotherapy for localized intermediate- and high-grade non-Hodgkin’s lymphoma. N Engl J Med 339(1):21–26. doi: 10.1056/NEJM199807023390104CrossRefPubMedGoogle Scholar
  74. Miller TP, LeBlanc M, Spier CM et al (2001) CHOP alone compared to CHOP plus radiotherapy for early aggressive non-Hodgkin’s lymphoma: update of the Southwest Oncology Group (SWOG) randomized trial. Blood 98:724aCrossRefGoogle Scholar
  75. Moskowitz CH, Yahalom J, Zelenetz AD et al (2010) High-dose chemo-radiotherapy for relapsed or refractory Hodgkin lymphoma and the significance of pre-transplant functional imaging. Br J Haematol 148(6):890–897. doi: 10.1111/j.1365-2141.2009.08037.xCrossRefPubMedPubMedCentralGoogle Scholar
  76. Ng AK, Bernardo MP, Weller E et al (2002) Long-term survival and competing causes of death in patients with early-stage Hodgkin’s disease treated at age 50 or younger. J Clin Oncol 20(8):2101–2108CrossRefGoogle Scholar
  77. Olszewski AJ, Shrestha R, Castillo JJ (2015) Treatment selection and outcomes in early-stage classical Hodgkin lymphoma: analysis of the National Cancer Data Base. J Clin Oncol 33(6):625–633. doi: 10.1200/JCO.2014.58.7543CrossRefPubMedGoogle Scholar
  78. Paumier A, Ghalibafian M, Beaudre A et al (2011) Involved-node radiotherapy and modern radiation treatment techniques in patients with Hodgkin lymphoma. Int J Radiat Oncol Biol Phys 80(1):199–205. doi: 10.1016/j.ijrobp.2010.09.007CrossRefPubMedGoogle Scholar
  79. Persky DO, Unger JM, Spier CM et al (2008) Phase II study of rituximab plus three cycles of CHOP and involved-field radiotherapy for patients with limited-stage aggressive B-cell lymphoma: Southwest Oncology Group study 0014. J Clin Oncol 26(14):2258–2263. doi: 10.1200/JCO.2007.13.6929CrossRefPubMedGoogle Scholar
  80. Pfreundschuh M, Trumper L, Osterborg A et al (2006) CHOP-like chemotherapy plus rituximab versus CHOP-like chemotherapy alone in young patients with good-prognosis diffuse large-B-cell lymphoma: a randomised controlled trial by the MabThera International Trial (MInT) Group. Lancet Oncol 7(5):379–391. doi:S1470-2045(06)70664-7 [pii]CrossRefGoogle Scholar
  81. Pfreundschuh M, Schubert J, Ziepert M et al (2008) Six versus eight cycles of bi-weekly CHOP-14 with or without rituximab in elderly patients with aggressive CD20+ B-cell lymphomas: a randomised controlled trial (RICOVER-60). Lancet Oncol 9(2):105–116. doi: 10.1016/S1470-2045(08)70002-0CrossRefPubMedGoogle Scholar
  82. Phan J, Mazloom A, Medeiros LJ et al (2010) Benefit of consolidative radiation therapy in patients with diffuse large B-cell lymphoma treated with R-CHOP chemotherapy. J Clin Oncol 28(27):4170–4176. doi: 10.1200/JCO.2009.27.3441CrossRefPubMedGoogle Scholar
  83. Radford J, Illidge T, Counsell N et al (2015) Results of a trial of PET-directed therapy for early-stage Hodgkin’s lymphoma. N Engl J Med 372(17):1598–1607. doi: 10.1056/NEJMoa1408648CrossRefPubMedGoogle Scholar
  84. Raemaekers JM, Andre MP, Federico M et al (2014) Omitting radiotherapy in early positron emission tomography-negative stage I/II Hodgkin lymphoma is associated with an increased risk of early relapse: clinical results of the preplanned interim analysis of the randomized EORTC/LYSA/FIL H10 trial. J Clin Oncol 32(12):1188–1194. doi: 10.1200/JCO.2013.51.9298CrossRefPubMedGoogle Scholar
  85. Reyes F, Lepage E, Ganem G et al (2005) ACVBP versus CHOP plus radiotherapy for localized aggressive lymphoma. N Engl J Med 352(12):1197–1205. doi:352/12/1197 [pii]CrossRefGoogle Scholar
  86. Sehn LH (2012) Chemotherapy alone for localized diffuse large B-cell lymphoma. Cancer J 18(5):421–426. doi: 10.1097/PPO.0b013e31826c5907CrossRefPubMedGoogle Scholar
  87. Shahidi M, Kamangari N, Ashley S et al (2006) Site of relapse after chemotherapy alone for stage I and II Hodgkin’s disease. Radiother Oncol 78(1):1–5. doi:S0167-8140(05)00492-5 [pii]CrossRefGoogle Scholar
  88. Shenkier TN, Voss N, Fairey R et al (2002) Brief chemotherapy and involved-region irradiation for limited-stage diffuse large-cell lymphoma: an 18-year experience from the British Columbia Cancer Agency. J Clin Oncol 20(1):197–204CrossRefGoogle Scholar
  89. Shi Z, Das S, Okwan-Duodu D et al (2013) Patterns of failure in advanced stage diffuse large B-cell lymphoma patients after complete response to R-CHOP immunochemotherapy and the emerging role of consolidative radiation therapy. Int J Radiat Oncol Biol Phys 86(3):569–577. doi: 10.1016/j.ijrobp.2013.02.007CrossRefPubMedGoogle Scholar
  90. Specht L, Yahalom J, Illidge T et al (2014) Modern radiation therapy for Hodgkin lymphoma: field and dose guidelines from the international lymphoma radiation oncology group (ILROG). Int J Radiat Oncol Biol Phys 89(4):854–862. doi: 10.1016/j.ijrobp.2013.05.005CrossRefPubMedGoogle Scholar
  91. Straus DJ, Portlock CS, Qin J et al (2004) Results of a prospective randomized clinical trial of doxorubicin, bleomycin, vinblastine, and dacarbazine (ABVD) followed by radiation therapy (RT) versus ABVD alone for stages I, II, and IIIA nonbulky Hodgkin disease. Blood 104(12):3483–3489. doi: 10.1182/blood-2004-04-1311CrossRefPubMedGoogle Scholar
  92. Straus DJ, Johnson JL, LaCasce AS et al (2011) Doxorubicin, vinblastine, and gemcitabine (CALGB 50203) for stage I/II nonbulky Hodgkin lymphoma: pretreatment prognostic factors and interim PET. Blood 117(20):5314–5320. doi: 10.1182/blood-2010-10-314260CrossRefPubMedPubMedCentralGoogle Scholar
  93. Terezakis SA, Hoppe BS (2012) Advances in radiation treatment of Hodgkin’s lymphoma. In: Tomblyn M, Winkfield KM, Dabaja B (eds) Hematologic malignancies. Demos Medical, New York, pp 367–380Google Scholar
  94. Thomas J, Fermé C, Noordijk EM et al (2007) Results of the EORTC-GELA H9 randomized trials: the H9-F trial (comparing 3 radiation dose levels) and H9-U trial (comparing 3 chemotherapy schemes) in patients with favorable or unfavorable early stage Hodgkin’s lymphoma (HL). Haematologica 92(S5):27Google Scholar
  95. Travis LB, Gospodarowicz M, Curtis RE et al (2002) Lung cancer following chemotherapy and radiotherapy for Hodgkin’s disease. J Natl Cancer Inst 94(3):182–192CrossRefGoogle Scholar
  96. Travis LB, Hill DA, Dores GM et al (2003) Breast cancer following radiotherapy and chemotherapy among young women with Hodgkin disease. JAMA 290(4):465–475. doi: 10.1001/jama.290.4.465CrossRefPubMedGoogle Scholar
  97. Travis LB, Rabkin CS, Brown LM et al (2006) Cancer survivorship – genetic susceptibility and second primary cancers: research strategies and recommendations. J Natl Cancer Inst 98(1):15–25. doi:98/1/15 [pii]CrossRefGoogle Scholar
  98. van Leeuwen FE, Klokman WJ, Stovall M et al (2003) Roles of radiation dose, chemotherapy, and hormonal factors in breast cancer following Hodgkin’s disease. J Natl Cancer Inst 95(13):971–980CrossRefGoogle Scholar
  99. van Nimwegen FA, Schaapveld M, Cutter DJ et al (2016) Radiation dose-response relationship for risk of coronary heart disease in survivors of Hodgkin lymphoma. J Clin Oncol 34(3):235–243. doi: 10.1200/JCO.2015.63.4444CrossRefPubMedGoogle Scholar
  100. Weber DC, Johanson S, Peguret N et al (2011) Predicted risk of radiation-induced cancers after involved field and involved node radiotherapy with or without intensity modulation for early-stage Hodgkin lymphoma in female patients. Int J Radiat Oncol Biol Phys 81(2):490–497. doi: 10.1016/j.ijrobp.2010.05.035CrossRefPubMedGoogle Scholar
  101. Yahalom J, Mauch P (2002) The involved field is back: issues in delineating the radiation field in Hodgkin’s disease. Ann Oncol 13(Suppl 1):79–83CrossRefGoogle Scholar
  102. Zietman AL (2015) Fifty years from Paris: the remarkable story of the lymphomas. Int J Radiat Oncol Biol Phys 92(1):1–2. doi: 10.1016/j.ijrobp.2015.03.009CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (, which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  1. 1.Department of Radiation OncologyJohns Hopkins HospitalBaltimoreUSA
  2. 2.Department of Radiation Oncology and Molecular Radiation SciencesSidney Kimmel Comprehensive Cancer Center at Johns HopkinsBaltimoreUSA

Personalised recommendations