pp 1-16 | Cite as

Pharmacological Heart Failure Therapy in Children: Focus on Inotropic Support

  • Dietmar SchranzEmail author
Part of the Handbook of Experimental Pharmacology book series


Pediatric heart failure is a clinical syndrome, which needs to be distinctly defined and the pathophysiological consequences considered. Pharmacological treatment depends on the disease- and age-specific myocardial characteristics. Acute and chronic low cardiac output is the result of an inadequate heart rate (rhythm), myocardial contractility, preload and afterload, and also ventriculo-ventricular interaction, synchrony, atrio-ventricular and ventricular-arterial coupling. The treatment of choice is curing the cause of heart failure, if possible.

Acute HF therapy is still based to the use of catecholamines and inodilators. The cornerstone of chronic HF treatment consists of blocking the endogenous, neuro-humoral axis, in particular the adrenergic and renin-angiotensin-aldosterone system.

Before neprilysin inhibitors are used in young children, their potential side-effect for inducing Alzheimer disease needs to be clarified. The focus of the current review is put on the differential use of the inotropic drugs as epinephrine, norepinephrine, dopamine and dobutamine, and also the inodilators milrinone and levosimendan. Considering effects and side-effects of any cardiac stimulating treatment strategy, co-medication with ß-blockers, angiotensin converting inhibitors (ACEIs), angiotensin blockers (ARBs) and mineralocorticoid receptor antagonists (MRAs) is not a contradiction, but a senseful measure, even still during the acute inotropic treatment.

Missing sophisticated clinical trials using accurate entry criteria and clinically relevant endpoints, there is especially in cardiovascular diagnosis and treatment of young children a compromise of evidence-based versus pathophysiology-based procedures. But based on the pharmacological and pathophysiological knowledge a hypothesis-driven individualized treatment is already currently possible and therefore indicated.


Children Heart failure Inotrops Pharmacology 


  1. Allen-Webb EM, Ross MP, Pappas JB, McGough EC, Banner W Jr (1994) Age-related amrinone pharmacokinetics in a pediatric population. Crit Care Med 22(6):1016–1024Google Scholar
  2. Angadi U, Westrope C, Chowdhry MF (2013) Is levosimendan effective in pediatric heart failure and post-cardiac surgeries? Interact Cardiovasc Thorac Surg 17:710e4Google Scholar
  3. Atlas SA (2007) The renin-angiotensin aldosterone system: pathophysiological role and pharmacologic inhibition. J Manag Care Pharm 13:9–20Google Scholar
  4. Barber CA, Wyckoff MH (2006) Use and efficacy of endotracheal versus intravenous epinephrine during neonatal cardiopulmonary resuscitation in the delivery room. Pediatrics 118:1028–1034Google Scholar
  5. Barrington KJ, Finer NN, Chan W (1995) A blind, randomized comparison of the circulatory effects of dopamine and epinephrine infusions in the newborn piglet during normoxia and hypoxia. Crit Care Med 23:740–748Google Scholar
  6. Barton P, Garcia J, Kouatli A, Kitchen L, Zorka A, Lindsay C, Lawless S, Giroir B (1996) Hemodynamic effects of i.v. milrinone lactate in pediatric patients with septic shock. A prospective, double-blinded, randomized, placebo-controlled, interventional study. Chest 109(5):1302–1312Google Scholar
  7. Bernstein D, Fajardo G, Zhao M (2011) The role of β-adrenergic Receptors in heart failure: differential regulation of cardiotoxicity and cardioprotection. Prog Pediatr Cardiol 31(1):35–38Google Scholar
  8. Borg TK, Rubin K, Lundgren E, Borg K, Obrink B (1984) Recognition of extracellular matrix components by neonatal and adult cardiac myocytes. Dev Biol 104(1):86–96Google Scholar
  9. Braunwald E (2013) Heart failure. JACC Heart Fail 1:1–20Google Scholar
  10. Bristow MR (1989) Mol Pharmacol 35:295–303Google Scholar
  11. Brodde O-E (1991) ß1and ß2-adrenoceptors in the human heart: properties, function, and alterations in chronic heart failure. Pharmacol Rev 43:203–242Google Scholar
  12. Brodde OE, Zerkowski HR, Schranz D et al (1995) Age-dependent changes in the beta-adrenoceptor–G protein(s)–adenylyl cyclase system in human right atrium. J Cardiovasc Pharmacol 26:20–26Google Scholar
  13. Burkhardt BE, Rucker G, Stiller B (2015) Prophylactic milrinone for the prevention of low cardiac output syndrome and mortality in children undergoing surgery for congenital heart disease. Cochrane Database Syst Rev (3):CD009515. Circ Heart Fail 2015; 8(1): 57–63Google Scholar
  14. Clutter WE, Bier DM, Shah SD, Cryer PE (1980) Epinephrine plasma metabolic clearance rates and physiologic thresholds for metabolic and hemodynamic actions in man. J Clin Invest 66:94Google Scholar
  15. Collucci WS (1998) The effects of norepinephrine on myocardial biology:Implications fort he therapy of heart failure. Clin Cardiol 21(Suppl 1):20–24Google Scholar
  16. Curley M, Liebers J, Maynard R (2017) Continuous intravenous milrinone therapy in pediatric outpatients. J Infus Nurs 40(2):92–96Google Scholar
  17. Dage RC, Kariya T, Hsieh CP, Roebel LE, Cheng HC, Schnettler RA, Grisar JM (1987) Pharmacology of enoximone. Am J Cardiol 60(5):10C–14CGoogle Scholar
  18. Dempsey EM, Barrington KJ (2007) Treating hypotension in the preterm infant: when and with what: a critical and systematic review. J Perinatol 27:469–478Google Scholar
  19. Digitalis Investigation Group (1997) The effect of digoxin on mortality and morbidity in patients with heart failure. N Engl J Med 336:525–533Google Scholar
  20. Digitalis Investigation Group (DIG) (1997) The effect of digoxin in mortality and morbidity in patients with heart failure. N Engl J Med 306:525–533Google Scholar
  21. Driscoll DJ, Gillette PC, Duff DF, Nihill MR, Gutgesell HP, Vargo TA, Mullins CE, McNamara DG (1979) Hemodynamic effects of dobutamine in children. Am J Cardiol 43(3):581–585Google Scholar
  22. El-Amouri SS, Zhu H, Yu J, Marr R, Verma IM (2008) Kindy MS neprilysin: an enzyme candidate to slow the progression of Alzheimer’s disease. Am J Pathol 172:1342–1354Google Scholar
  23. Emorine LJ, Marullo S, Briend-Sutren MM, Patey G, Tate K, Delavier-Klutchko C, Strosberg AD (1989) Molecular characterization of the human beta 3-adrenergic receptor. Science 245(4922):1118–1121Google Scholar
  24. Engle MA, Lewy JE, Lewy PR, Metcoff J (1978) The use of furosemide in the treatment of edema in infants and children. Pediatrics 62:811–818Google Scholar
  25. Ergenekon E, Rojas-Anaya H, Bravo MC, Kotidis C, Mahoney L, Rabe H (2017) Cardiovascular drug therapy for human newborn: review of pharmacodynamic data. Curr Pharm Des 23(38):5850–5860Google Scholar
  26. Farris W, Schutz SG, Cirrito JR, Shankar GM, Sun X, George A, Leissring MA, Walsh DM, Qiu WQ, Holtzman DM, Selkoe DJ (2007) Loss of neprilysin function promotes amyloid plaque formation and causes cerebral amyloid angiopathy. Am J Pathol 171:241–251Google Scholar
  27. Ferrer-Barba A, Gonzalez-Rivera I, Bautista-Hernandez V (2016) Inodilators in the management of low cardiac output syndrome after pediatric cardiac surgery. Curr Vasc Pharmacol 14(1):48–57Google Scholar
  28. Frobel A-K, Hulpke-Wette M, Schmidt KG, Läer S (2009) Beta-blockers for congestive heart failure in children. In: Cochrane database of systematic reviews [Internet]. Wiley, New York.
  29. Furchgott RF (1959) The receptors for epinephrine and norepinephrine (adrenergic receptors). Pharmacol Rev 11:429–441Google Scholar
  30. Han C, Abel PW, Minneman KP (1987) Alpha1Adrenoceptor subtypes linked to different mechanisms for increasing intracellular Ca2+ in smooth muscle. Nature 329:333–335Google Scholar
  31. Hoffman TM, Wernovsky G, Atz AM et al (2003) Efficacy and safety of milrinone in preventing low cardiac output syndrome in infants and children after corrective surgery for congenital heart disease. Circulation 107(7):996–1002Google Scholar
  32. Hussey AD, Weintraub RG (2016) Drug treatment of heart failure in children: focus on recent recommendations from the ISHLT guidelines for the management of pediatric heart failure. Paediatr Drugs 18:89e99Google Scholar
  33. Jonker SS, Zhang L, Louey S, Giraud GD, Thornburg KL, Faber JJ (1985) Myocyte enlargement, differentiation, and proliferation kinetics in the fetal sheep heart. J Appl Physiol 102:1130–1142Google Scholar
  34. Kantor PF, Lougheed J, Dancea A, McGillion M, Barbosa N, Chan C et al (2013) Presentation, diagnosis, and medical management of heart failure in children: Canadian Cardiovascular Society guidelines. Can J Cardiol 29(12):1535–1552Google Scholar
  35. Kirk R, Dipchand AI, Rosenthal DN, Addonizio L, Burch M, Chrisant M, Dubin A, Everitt M, Gajarski R, Mertens L et al (2014) The international society of heart and lung transplantation guidelines for the management of pediatric heart failure: executive summary. J Heart Lung Transplant 33:888–909Google Scholar
  36. Kreidberg MB, Chernoff HL, Lopez WL (1963) Treatment of cardiac failure in infancy and childhood. N Engl J Med 268:23–30Google Scholar
  37. Lakatta EG (1993) β1-adrenoceptor stimulation and β2-adrenoceptor stimulation differ in their effects on contraction, cytosolic Ca2+, and Ca2+ current in single rat ventricular cells. Circ Res 73:286–300Google Scholar
  38. Lefkowitz RJ, Caron MG (1985) Adrenergic-receptors: molecular mechanisms of clinically relevant regulation. Clin Res 33:395–406Google Scholar
  39. Li F, Wang X, Capasso JM, Gerdes AM (1996) Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J Mol Cell Cardiol 28:1737–1746Google Scholar
  40. Liet JM, Boscher C, Gras-Leguen C, Gournay V, Debillon T, Rozé JC (2002) Dopamine effects on pulmonary artery pressure in hypotensive preterm infants with patent ductus arteriosus. J Pediatr 140:373–375Google Scholar
  41. Lokhandwala MF, Barrett RJ (1982) Cardiovascular dopamine receptors: physiological, pharmacological and therapeutic implications. J Auton Pharmacol 2(3):189–215Google Scholar
  42. Louch WE, Koivumäki JT, Tavi P (2015) Calcium signaling in developing cardiomyocytes: implications for model systems and disease. J Physiol 593(5):1047–1063Google Scholar
  43. Masarone D, Valente F, Rubino M, Vastarella R, Gravino R, Rea A, Russo MG, Pacileo G, Limongelli G (2017) Pediatric heart failure: a practical guide to diagnosis and management. Pediatr Neonatol 58(4):303–312Google Scholar
  44. Masutani S, Saiki H, Kurishima C, Ishido H, Tamura M, Senzaki H (2013) Heart failure with preserved ejection fraction in children. Hormonal imbalance between aldosterone and brain natriuretic peptide. Circ J 77:2375–2382Google Scholar
  45. McMurray JJ, Packer M, Desai AS et al (2014) Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med 371:993–1004Google Scholar
  46. Miyamoto SD, Stauffer BL, Nakano S, Sobus R, Nunley K, Nelson P et al (2014) Beta-adrenergic adaptation in pediatric idiopathic dilated cardiomyopathy. Eur Heart J 35(1):33–41Google Scholar
  47. Mollovaa M, Bersella K, Walsha S, Savlaa S, Tanmoy Dasa L, Park S-Y, Silbersteine SL, dos Remediosg DG, Grahama D, Colana D, Kühn B (2013) Cardiomyocyte proliferation contributes to heart growth in young humans. Proc Natl Acad Sci U S A 110:1446–1451Google Scholar
  48. Mullett CJ, Kong JQ, Romano JT, Polak MJ (1992) Age-related changes in pulmonary venous epinephrine concentration, and pulmonary vascular response after intratracheal epinephrine. Pediatr Res 31:458–461Google Scholar
  49. Nakano SJ, Miyamoto SD, Movsesian M, Nelson P, Stauffer BL, Sucharov CC (2015) Age-related differences in phosphodiesterase activity and effects of chronic phosphodiesterase inhibition in idiopathic dilated cardiomyopathy. Circ Heart Fail 8(1):57–63Google Scholar
  50. Nakano SJ, Sucharov J, van Dusen R, Cecil M, Nunley K, Wickers S, Karimpur-Fard A, Stauffer BL, Miyamoto SD, Sucharov CC (2017) Cardiac adenylyl cyclase and phosphodiesterase expression profiles vary by age, disease, and chronic phosphodiesterase inhibitor treatment. J Card Fail 23(1):72–80Google Scholar
  51. Narula J, Haider N, Virmani R, DiSalvo TG, Kolodgie FD, Hajjar RJ, Schmidt U, Semigran MJ, Dec GW, Khaw BA (1996) Apoptosis in myocytes in end-stage heart failure. N Engl J Med 335(16):1182–1189Google Scholar
  52. Navaratnarajah M, Siedlecka U, Ibrahim M, van Doorn C, Soppa G, Gandhi A et al (2014) Impact of combined clenbuterol and metoprolol therapy on reverse remodelling during mechanical unloading. PLoS One 9(9):e92909Google Scholar
  53. Noori S, Seri I (2012) Neonatal blood pressure support: the use of inotropes, luisitropes, and other vasopressor agents. Clin Perinatol 39:221–238Google Scholar
  54. Noori S, Seri I (2015) Evidence-based versus pathophysiology-based approach to diagnosis and treatment of neonatal cardiovascular compromise. Semin Fetal Neonatal Med 20(4):238–245Google Scholar
  55. Noori S, Freidlich P, Seri I (2003) Developmentally regulated cardiovascular, renal and neuroendocrine effects of dopamine. NeoReviews 4:e283–e288. Scholar
  56. Norris RA, Borg TK, Butcher JT, Baudino TA, Banerjee I, Markwald RR (2008) Neonatal and adult cardiovascular pathophysiological remodeling and repair: developmental role of periostin. Ann N Y Acad Sci 1123:30–40Google Scholar
  57. Oster ME, Kelleman M, McCracken C, Ohye RG, Mahle WT (2016) Association of digoxin with interstage mortality: results from the pediatric heart network single ventricle reconstruction trial public use dataset. J Am Heart Assoc 5(1):e002566Google Scholar
  58. Padbury JF, Agata Y, Baylen BG, Ludlow JK, Polk DH, Goldblatt E et al (1987) Dopamine pharmacokinetics in critically ill newborninfants. J Pediatr 110:293–298Google Scholar
  59. Pasquali Sara K, Matthew H, Slonim Anthony D, Jenkins Kathy J, Marino Bradley S, Cohen Meryl S et al (2008) Off-label use of cardiovascular medications in children hospitalized with congenital and acquired heart disease. Circ Cardiovasc Qual Outcomes 1(2):74–83Google Scholar
  60. Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, Palensky J, Wittes J (1999) The effect of spironolactone on morbidity and mortality in patients with severe heart failure. N Engl J Med 341:709–717Google Scholar
  61. Ratnapalan S, Griffiths K, Costei AM, Benson L, Koren G (2003) Digoxin-carvedilol interactions in children. J Pediatr 142:572–574Google Scholar
  62. Recla S, Steinbrenner B, Schranz D (2013) Medical therapy in dilated cardiomyopathy and pulmonary arterial banding in children. J Heart Lung Transplant 32(10):1045–1046Google Scholar
  63. Rodriguez W, Selen A, Avant D, Chaurasia C, Crescenzi T, Gieser G et al (2008) Improving pediatric dosing through pediatric initiatives: what we have learned. Pediatrics 121(3):530–539Google Scholar
  64. Roeleveld PP, de Klerk JCA (2018) The Perspective of the intensivist on inotropes and postoperative care following pediatric heart surgery: an international survey and systematic review of the literature. World J Pediatr Congenit Heart Surg 9(1):10–21Google Scholar
  65. Rognoni A, Lupi A, Lazzero M, Bongo AS, Rognoni G (2011) Levosimendan: from basic science to clinical trials. Recent Pat Cardiovasc Drug Discov 6:9e15Google Scholar
  66. Ross RD, Daniels SR, Schwartz DC, Hannon DW, Shukla R, Kaplan S (1987) Plasma norepinephrine levels in infants and children with congestive heart failure. Am J Cardiol 59:911–914Google Scholar
  67. Rossano JW, Shaddy RE (2014) Update on pharmacological heart failure therapies in children: do adult medications work in children and if not, why not? Circulation 129:607–612Google Scholar
  68. Schindler MB, Hislop AA, Haworth SG (2004) Postnatal changes in response to norepinephrine in the normal and pulmonary hypertensive lung. Am J Respir Crit Care Med 170(6):641–646Google Scholar
  69. Schranz D (1993) Kardiovaskuläre Erkrankungen. In: Pädiatrische Intensivmedizin. 2. Auflage Gustav Fischer Verlag Stuttgart JenaGoogle Scholar
  70. Schranz D, Voelkel NF (2016) “Nihilism” of chronic heart failure therapy in children and why effective therapy is withheld. Eur J Pediatr 175:445–455Google Scholar
  71. Schranz D, Stopfkuchen H, Jüngst BK, Clemens R, Emmrich P (1982) Hemodynamic effects of dobutamine in children with cardiovascular failure. Eur J Pediatr 139(1):4–7Google Scholar
  72. Schranz D, Huth R, Dahm M, Iversen S, Hein E, Stopfkuchen H, Jüngst BK (1989) Acute hemodynamic response to intravenous enoximone: an animal study and preliminary report in infants after cardiac surgery. J Cardiovasc Pharmacol 14(Suppl 1):S62–S68Google Scholar
  73. Schranz D, Droege A, Broede A, Brodermann G, Schafer E, Oelert H, Brodde OE (1993) Uncoupling of human cardiac adrenoceptors during cardiopulmonary bypass with cardioplegic cardiac arrest. Circulation 87:422–426Google Scholar
  74. Schranz D, Rupp S, Müller M, Schmidt D, Bauer A, Valeske K et al (2013) Pulmonary artery banding in infants and young children with left ventricular dilated cardiomyopathy: a novel therapeutic strategy before heart transplantation. J Heart Lung Transplant 32(5):475–481Google Scholar
  75. Schranz D, Akintuerk H, Bailey L (2018) Pulmonary artery banding for functional regeneration of end-stage dilated cardiomyopathy in young children: world network report. Circulation 137(13):1410–1412Google Scholar
  76. Seguchi M, Nakazawa M, Momma K (1999) Further evidence suggesting a limited role of digitalis in infants with circulatory congestion secondary to large ventricular septal defect. Am J Cardiol 83:1408–1411Google Scholar
  77. Seri I (1995) Cardiovascular, renal, and endocrine actions of dopamine in neonates and children. J Pediatr 126:333–344Google Scholar
  78. Seri I, Rudas G, Bors Z, Kanyicksa B, Tulassay T (1993) Effects of low dose dopamine infusions in cardiovascular and renal functions, cerebral blood flow and plasma catecholamine levels in sick preterm neonates. Pediatr Res 34:742–749Google Scholar
  79. Shaddy RE, Boucek MM, Hsu DT et al (2007) Carvedilol for children and adolescents with heart failure: a randomized controlled trial. JAMA 298(117):1–9Google Scholar
  80. Shavit G, Sagy M, Nadler E, Vidne BA, Gitter S (1989) Myocardial response to alpha-agonist (phenylephrine) in relation to age. Crit Care Med 17(12):1324–1327Google Scholar
  81. Sonnenblick EH, Frishman WH, LeJemtel TH (1979) Dobutamine: a new synthetic cardioactive sympathetic amine. N Engl J Med 300(1):17–22Google Scholar
  82. Sperelakis N, Pappano AJ (1983) Physiology and pharmacology of developing heart cells. Pharmacol Ther 22:1–39Google Scholar
  83. Teitel DF, Cassidy SC, Fineman JR (2008) Circulation physiology. In: Moss AJ, Allen HD (eds) Moss and Adams’ heart disease in infants, children, and adolescents: including the fetus and young adult. Wolters Kluwer Health/Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  84. Towbin JA, Lowe AM, Colan SD et al (2006) Incidence, causes, and outcomes of dilated cardiomyopathy in children. JAMA 296:1867–1876Google Scholar
  85. Veldman A, Rupp S, Schranz D (2006) New inotropic pharmacologic strategies targeting the failing myocardium in the newborn and infant. Mini Rev Med Chem 6(7):785–792Google Scholar
  86. Vlahakes GJ, Turley K, Hoffman JI (1981) The pathophysiology of failure in acute right ventricular hypertension: hemodynamic and biochemical correlations. Circulation 63(1):87–95Google Scholar
  87. Wyckoff MH, Aziz K, Escobedo MB, Kapadia VS, Kattwinkel J, Perlman JM, Simon WM, Weiner GM, Zaichkin JG (2015) Part 13: neonatal resuscitation: 2015 American heart association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation (132):S543–S560Google Scholar
  88. Xiao R-P, Zhu W, Zheng M, Chakir K, Bond R, Lakatta EG et al (2004) Subtype-specific β-adrenoceptor signaling pathways in the heart and their potential clinical implications. Trends Pharmacol Sci 25(7):358–365Google Scholar
  89. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Colvin MM et al (2017) 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. J Am Coll Cardiol 28:236Google Scholar
  90. Yasojima K, McGeer EG, McGeer PL (2001) Relationship between beta amyloid peptide generating molecules and neprilysin in Alzheimer disease and normal brain. Brain Res 919:115–121Google Scholar
  91. Young MA, Vatner DE, Vatner SF (1990) Alpha- and beta-adrenergic control of large coronary arteries in conscious calves. Basic Res Cardiol (85 Suppl 1):97–109Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Pediatric Heart CenterJohann Wolfgang Goethe University ClinicFrankfurtGermany

Personalised recommendations