pp 1-31 | Cite as

Bile Acid-Activated Receptors: GPBAR1 (TGR5) and Other G Protein-Coupled Receptors

  • Verena KeitelEmail author
  • Jan Stindt
  • Dieter Häussinger
Part of the Handbook of Experimental Pharmacology book series


The BA-responsive GPCRs S1PR2 and TGR5 are almost ubiquitously expressed in human and rodent tissues. In the liver, S1PR2 is expressed in all cell types, while TGR5 is predominately found in non-parenchymal cells. In contrast to S1PR2, which is mainly activated by conjugated bile acids (BAs), all BAs serve as ligands for TGR5 irrespective of their conjugation state and substitution pattern.

Mice with targeted deletion of either S1PR2 or TGR5 are viable and develop no overt phenotype. In liver injury models, S1PR2 exerts pro-inflammatory and pro-fibrotic effects and thus aggravates liver damage, while TGR5 mediates anti-inflammatory, anti-cholestatic, and anti-fibrotic effects. Thus, inhibitors of S1PR2 signaling and agonists for TGR5 have been employed to attenuate liver injury in rodent models for cholestasis, nonalcoholic steatohepatitis, and fibrosis/cirrhosis.

In biliary epithelial cells, both receptors activate a similar signaling cascade resulting in ERK1/2 phosphorylation and cell proliferation. Overexpression of both S1PR2 and TGR5 was found in human cholangiocarcinoma tissue as well as in CCA cell lines, where stimulation of both GPCRs resulted in transactivation of the epidermal growth factor receptor and triggered cell proliferation as well as increased cell migration and invasiveness.

This chapter will focus on the function of S1PR2 and TGR5 in different liver cell types and summarizes current knowledge on the role of these receptors in liver disease models.


Bile acid receptor Bile acids G protein-coupled receptor Liver disease S1PR2  TGR5 



Our studies reported herein were supported by DFG through SFB974 “Communication and systems relevance in liver damage and regeneration.”


  1. Adada M, Canals D, Hannun YA, Obeid LM (2013) Sphingosine-1-phosphate receptor 2. FEBS J 280(24):6354–6366Google Scholar
  2. Alemi F, Poole DP, Chiu J, Schoonjans K, Cattaruzza F, Grider JR, Bunnett NW, Corvera CU (2013a) The receptor TGR5 mediates the prokinetic actions of intestinal bile acids and is required for normal defecation in mice. Gastroenterology 144(1):145–154Google Scholar
  3. Alemi F, Kwon E, Poole DP, Lieu T, Lyo V, Cattaruzza F, Cevikbas F, Steinhoff M, Nassini R, Materazzi S, Guerrero-Alba R, Valdez-Morales E, Cottrell GS, Schoonjans K, Geppetti P, Vanner SJ, Bunnett NW, Corvera CU (2013b) The TGR5 receptor mediates bile acid-induced itch and analgesia. J Clin Invest 123(4):1513–1530Google Scholar
  4. Becker S, Reinehr R, Graf D, vom DS, Häussinger D (2007a) Hydrophobic bile salts induce hepatocyte shrinkage via NADPH oxidase activation. Cell Physiol Biochem 19(1–4):89–98Google Scholar
  5. Becker S, Reinehr R, Grether-Beck S, Eberle A, Häussinger D (2007b) Hydrophobic bile salts trigger ceramide formation through endosomal acidification. Biol Chem 388(2):185–196Google Scholar
  6. Beuers U, Hohenester S, de Buy Wenniger LJ, Kremer AE, Jansen PL, Elferink RP (2010) The biliary HCO(3)(-) umbrella: a unifying hypothesis on pathogenetic and therapeutic aspects of fibrosing cholangiopathies. Hepatology 52(4):1489–1496Google Scholar
  7. Biagioli M, Carino A, Cipriani S, Francisci D, Marchiano S, Scarpelli P, Sorcini D, Zampella A, Fiorucci S (2017) the bile acid receptor GPBAR1 regulates the M1/M2 phenotype of intestinal macrophages and activation of GPBAR1 rescues mice from murine colitis. J Immunol 199(2):718–733Google Scholar
  8. Blaho VA, Hla T (2014) An update on the biology of sphingosine 1-phosphate receptors. J Lipid Res 55(8):1596–1608Google Scholar
  9. Briere DA, Ruan X, Cheng CC, Siesky AM, Fitch TE, Dominguez C, Sanfeliciano SG, Montero C, Suen CS, Xu Y, Coskun T, Michael MD (2015) Novel small molecule agonist of TGR5 possesses anti-diabetic effects but causes gallbladder filling in mice. PLoS One 10(8):e0136873Google Scholar
  10. Carino A, Marchiano S, Biagioli M, Bucci M, Vellecco V, Brancaleone V, Fiorucci C, Zampella A, Monti MC, Distrutti E, Fiorucci S (2018) Agonism for the bile acid receptor GPBAR1 reverses liver and vascular damage in a mouse model of steatohepatitis. FASEB J. Scholar
  11. Chavez-Talavera O, Tailleux A, Lefebvre P, Staels B (2017) Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease. Gastroenterology 152(7):1679–1694.e3Google Scholar
  12. Chen X, Yang D, Shen W, Dong HF, Wang JM, Oppenheim JJ, Howard MZ (2000) Characterization of chenodeoxycholic acid as an endogenous antagonist of the G-coupled formyl peptide receptors. Inflamm Res 49(12):744–755Google Scholar
  13. Chen T, Huang Z, Liu R, Yang J, Hylemon PB, Zhou H (2017) Sphingosine-1 phosphate promotes intestinal epithelial cell proliferation via S1PR2. Front Biosci (Landmark Ed) 22:596–608Google Scholar
  14. Chen T, Lin R, Jin S, Chen R, Xue H, Ye H, Huang Z (2018a) The sphingosine-1-phosphate/sphingosine-1-phosphate receptor 2 axis in intestinal epithelial cells regulates intestinal barrier function during intestinal epithelial cells-CD4+T-cell interactions. Cell Physiol Biochem 48(3):1188–1200Google Scholar
  15. Chen T, Reich NW, Bell N, Finn PD, Rodriguez D, Kohler J, Kozuka K, He L, Spencer AG, Charmot D, Navre M, Carreras CW, Koo-McCoy S, Tabora J, Caldwell JS, Jacobs JW, Lewis JG (2018b) Design of gut-restricted thiazolidine agonists of G protein-coupled bile acid receptor 1 (GPBAR1, TGR5). J Med Chem 61(17):7589–7613Google Scholar
  16. Cheng SH, Rich DP, Marshall J, Gregory RJ, Welsh MJ, Smith AE (1991) Phosphorylation of the R domain by cAMP-dependent protein kinase regulates the CFTR chloride channel. Cell 66(5):1027–1036Google Scholar
  17. Cheng K, Khurana S, Chen Y, Kennedy RH, Zimniak P, Raufman JP (2002) Lithocholylcholine, a bile acid/acetylcholine hybrid, is a muscarinic receptor antagonist. J Pharmacol Exp Ther 303(1):29–35Google Scholar
  18. Copple BL, Li T (2016) Pharmacology of bile acid receptors: Evolution of bile acids from simple detergents to complex signaling molecules. Pharmacol Res 104:9–21Google Scholar
  19. de Oliveira MC, Gilglioni EH, de Boer BA, Runge JH, de Waart DR, Salgueiro CL, Ishii-Iwamoto EL, Oude Elferink RP, Gaemers IC (2016) Bile acid receptor agonists INT747 and INT777 decrease oestrogen deficiency-related postmenopausal obesity and hepatic steatosis in mice. Biochim Biophys Acta 1862(11):2054–2062Google Scholar
  20. Deutschmann K, Reich M, Klindt C, Dröge C, Spomer L, Häussinger D, Keitel V (2018) Bile acid receptors in the biliary tree: TGR5 in physiology and disease. Biochim Biophys Acta 1864(4. Pt B):1319–1325Google Scholar
  21. Donepudi AC, Boehme S, Li F, Chiang JY (2017) G-protein-coupled bile acid receptor plays a key role in bile acid metabolism and fasting-induced hepatic steatosis in mice. Hepatology 65(3):813–827Google Scholar
  22. Duan H, Ning M, Chen X, Zou Q, Zhang L, Feng Y, Zhang L, Leng Y, Shen J (2012) Design, synthesis, and antidiabetic activity of 4-phenoxynicotinamide and 4-phenoxypyrimidine-5-carboxamide derivatives as potent and orally efficacious TGR5 agonists. J Med Chem 55(23):10475–10489Google Scholar
  23. Duan H, Ning M, Zou Q, Ye Y, Feng Y, Zhang L, Leng Y, Shen J (2015) Discovery of intestinal targeted TGR5 agonists for the treatment of type 2 diabetes. J Med Chem 58(8):3315–3328Google Scholar
  24. Erice O, Labiano I, Arbelaiz A, Santos-Laso A, Munoz-Garrido P, Jimenez-Aguero R, Olaizola P, Caro-Maldonado A, Martin-Martin N, Carracedo A, Lozano E, Marin JJ, O'Rourke CJ, Andersen JB, Llop J, Gomez-Vallejo V, Padro D, Martin A, Marzioni M, Adorini L, Trauner M, Bujanda L, Perugorria MJ, Banales JM (2018) Differential effects of FXR or TGR5 activation in cholangiocarcinoma progression. Biochim Biophys Acta 1864(4 Pt B):1335–1344Google Scholar
  25. Farrell G, Schattenberg JM, Leclercq I, Yeh MM, Goldin R, Teoh N, Schuppan D (2019) Mouse models of nonalcoholic steatohepatitis: towards optimization of their relevance to human NASH. Hepatology 69(5):2241–2257Google Scholar
  26. Faubion WA, Guicciardi ME, Miyoshi H, Bronk SF, Roberts PJ, Svingen PA, Kaufmann SH, Gores GJ (1999) Toxic bile salts induce rodent hepatocyte apoptosis via direct activation of Fas. J Clin Invest 103(1):137–145Google Scholar
  27. Ferrari C, Macchiarulo A, Costantino G, Pellicciari R (2006) Pharmacophore model for bile acids recognition by the FPR receptor. J Comput Aided Mol Des 20(5):295–303Google Scholar
  28. Finn PD, Rodriguez D, Kohler J, Jiang Z, Wan S, Blanco E, King AJ, Chen T, Bell N, Dragoli D, Jacobs JW, Jain R, Leadbetter M, Siegel M, Carreras CW, Koo-McCoy S, Shaw K, Le C, Vanegas S, Hsu IH, Kozuka K, Okamoto K, Caldwell JS, Lewis JGP (2019) Intestinal TGR5 agonism improves hepatic steatosis and insulin sensitivity in Western diet-fed mice. Am J Physiol Gastrointest Liver Physiol 316(3):G412–G424Google Scholar
  29. Fiorucci S, Zampella A, Cirino G, Bucci M, Distrutti E (2017) Decoding the vasoregulatory activities of bile acid-activated receptors in systemic and portal circulation: role of gaseous mediators. Am J Physiol Heart Circ Physiol 312(1):H21–H32Google Scholar
  30. Gascon-Barre M, Demers C, Mirshahi A, Neron S, Zalzal S, Nanci A (2003) The normal liver harbors the vitamin D nuclear receptor in nonparenchymal and biliary epithelial cells. Hepatology 37(5):1034–1042Google Scholar
  31. Godoy P, Hewitt NJ, Albrecht U, Andersen ME, Ansari N, Bhattacharya S, Bode JG, Bolleyn J, Borner C, Bottger J, Braeuning A, Budinsky RA, Burkhardt B, Cameron NR, Camussi G, Cho CS, Choi YJ, Craig Rowlands J, Dahmen U, Damm G, Dirsch O, Donato MT, Dong J, Dooley S, Drasdo D, Eakins R, Ferreira KS, Fonsato V, Fraczek J, Gebhardt R, Gibson A, Glanemann M, Goldring CE, Gomez-Lechon MJ, Groothuis GM, Gustavsson L, Guyot C, Hallifax D, Hammad S, Hayward A, Häussinger D, Hellerbrand C, Hewitt P, Hoehme S, Holzhutter HG, Houston JB, Hrach J, Ito K, Jaeschke H, Keitel V, Kelm JM, Kevin Park B, Kordes C, Kullak-Ublick GA, LeCluyse EL, Lu P, Luebke-Wheeler J, Lutz A, Maltman DJ, Matz-Soja M, McMullen P, Merfort I, Messner S, Meyer C, Mwinyi J, Naisbitt DJ, Nussler AK, Olinga P, Pampaloni F, Pi J, Pluta L, Przyborski SA, Ramachandran A, Rogiers V, Rowe C, Schelcher C, Schmich K, Schwarz M, Singh B, Stelzer EH, Stieger B, Stober R, Sugiyama Y, Tetta C, Thasler WE, Vanhaecke T, Vinken M, Weiss TS, Widera A, Woods CG, Xu JJ, Yarborough KM, Hengstler JG (2013) Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol 87(8):1315–1530Google Scholar
  32. Gohlke H, Schmitz B, Sommerfeld A, Reinehr R, Häussinger D (2013) alpha5 beta1-integrins are sensors for tauroursodeoxycholic acid in hepatocytes. Hepatology 57(3):1117–1129Google Scholar
  33. Graf D, Kurz AK, Fischer R, Reinehr R, Häussinger D (2002) Taurolithocholic acid-3 sulfate induces CD95 trafficking and apoptosis in a c-Jun N-terminal kinase-dependent manner. Gastroenterology 122(5):1411–1427Google Scholar
  34. Guo C, Xie S, Chi Z, Zhang J, Liu Y, Zhang L, Zheng M, Zhang X, Xia D, Ke Y, Lu L, Wang D (2016) Bile acids control inflammation and metabolic disorder through inhibition of NLRP3 inflammasome. Immunity 45(4):802–816Google Scholar
  35. Hait NC, Allegood J, Maceyka M, Strub GM, Harikumar KB, Singh SK, Luo C, Marmorstein R, Kordula T, Milstien S, Spiegel S (2009) Regulation of histone acetylation in the nucleus by sphingosine-1-phosphate. Science 325(5945):1254–1257Google Scholar
  36. Han S, Chiang JY (2009) Mechanism of vitamin D receptor inhibition of cholesterol 7alpha-hydroxylase gene transcription in human hepatocytes. Drug Metab Dispos 37(3):469–478Google Scholar
  37. Haselow K, Bode JG, Wammers M, Ehlting C, Keitel V, Kleinebrecht L, Schupp AK, Häussinger D, Graf D (2013) Bile acids PKA-dependently induce a switch of the IL-10/IL-12 ratio and reduce proinflammatory capability of human macrophages. J Leukoc Biol 94(6):1253–1264Google Scholar
  38. Häussinger D, Keitel V (2017) Dual role of the bile acid receptor Takeda G-protein-coupled receptor 5 for hepatic lipid metabolism in feast and famine. Hepatology 65(3):767–770Google Scholar
  39. Häussinger D, Kurz AK, Wettstein M, Graf D, Vom Dahl S, Schliess F (2003) Involvement of integrins and Src in tauroursodeoxycholate-induced and swelling-induced choleresis. Gastroenterology 124(5):1476–1487Google Scholar
  40. Häussinger D, Reinehr R, Keitel V (2012) Bile acid signaling in the liver and the biliary tree. In: Häussinger D, Keitel V, Kubitz R (eds) Hepatobiliary transport in health and disease. DeGruyter, Berlin, pp 85–102Google Scholar
  41. Hirschfield GM, Karlsen TH, Lindor KD, Adams DH (2013) Primary sclerosing cholangitis. Lancet 382(9904):1587–1599Google Scholar
  42. Hogenauer K, Arista L, Schmiedeberg N, Werner G, Jaksche H, Bouhelal R, Nguyen DG, Bhat BG, Raad L, Rauld C, Carballido JM (2014) G-protein-coupled bile acid receptor 1 (GPBAR1, TGR5) agonists reduce the production of proinflammatory cytokines and stabilize the alternative macrophage phenotype. J Med Chem 57(24):10343–10354Google Scholar
  43. Hohenester S, Gates A, Wimmer R, Beuers U, Anwer MS, Rust C, Webster CR (2010) Phosphatidylinositol-3-kinase p110gamma contributes to bile salt-induced apoptosis in primary rat hepatocytes and human hepatoma cells. J Hepatol 53(5):918–926Google Scholar
  44. Hohenester S, Wenniger LM, Paulusma CC, van Vliet SJ, Jefferson DM, Elferink RP, Beuers U (2012) A biliary HCO3- umbrella constitutes a protective mechanism against bile acid-induced injury in human cholangiocytes. Hepatology 55(1):173–183Google Scholar
  45. Hong J, Behar J, Wands J, Resnick M, Wang LJ, DeLellis RA, Lambeth D, Souza RF, Spechler SJ, Cao W (2010) Role of a novel bile acid receptor TGR5 in the development of oesophageal adenocarcinoma. Gut 59(2):170–180Google Scholar
  46. Hou J, Chen Q, Zhang K, Cheng B, Xie G, Wu X, Luo C, Chen L, Liu H, Zhao B, Dai K, Fang X (2015) Sphingosine 1-phosphate receptor 2 signaling suppresses macrophage phagocytosis and impairs host defense against sepsis. Anesthesiology 123(2):409–422Google Scholar
  47. Hov JR, Keitel V, Laerdahl JK, Spomer L, Ellinghaus E, ElSharawy A, Melum E, Boberg KM, Manke T, Balschun T, Schramm C, Bergquist A, Weismuller T, Gotthardt D, Rust C, Henckaerts L, Onnie CM, Weersma RK, Sterneck M, Teufel A, Runz H, Stiehl A, Ponsioen CY, Wijmenga C, Vatn MH, IBSEN Study Group, Stokkers PC, Vermeire S, Mathew CG, Lie BA, Beuers U, Manns MP, Schreiber S, Schrumpf E, Häussinger D, Franke A, Karlsen TH (2010) Mutational characterization of the bile acid receptor TGR5 in primary sclerosing cholangitis. PloS One 5(8):e12403Google Scholar
  48. Hov JR, Keitel V, Schrumpf E, Häussinger D, Karlsen TH (2011) TGR5 sequence variation in primary sclerosing cholangitis. Dig Dis 29(1):78–84Google Scholar
  49. Howard M, Jiang X, Stolz DB, Hill WG, Johnson JA, Watkins SC, Frizzell RA, Bruton CM, Robbins PD, Weisz OA (2000) Forskolin-induced apical membrane insertion of virally expressed, epitope-tagged CFTR in polarized MDCK cells. Am J Physiol Cell Physiol 279(2):C375–C382Google Scholar
  50. Hughes JE, Srinivasan S, Lynch KR, Proia RL, Ferdek P, Hedrick CC (2008) Sphingosine-1-phosphate induces an antiinflammatory phenotype in macrophages. Circ Res 102(8):950–958Google Scholar
  51. Ichikawa R, Takayama T, Yoneno K, Kamada N, Kitazume MT, Higuchi H, Matsuoka K, Watanabe M, Itoh H, Kanai T, Hisamatsu T, Hibi T (2012) Bile acids induce monocyte differentiation toward interleukin-12 hypo-producing dendritic cells via a TGR5-dependent pathway. Immunology 136(2):153–162Google Scholar
  52. Ikeda H, Nagashima K, Yanase M, Tomiya T, Arai M, Inoue Y, Tejima K, Nishikawa T, Watanabe N, Omata M, Fujiwara K (2004) Sphingosine 1-phosphate enhances portal pressure in isolated perfused liver via S1P2 with Rho activation. Biochem Biophys Res Commun 320(3):754–759Google Scholar
  53. Ikeda H, Watanabe N, Ishii I, Shimosawa T, Kume Y, Tomiya T, Inoue Y, Nishikawa T, Ohtomo N, Tanoue Y, Iitsuka S, Fujita R, Omata M, Chun J, Yatomi Y (2009) Sphingosine 1-phosphate regulates regeneration and fibrosis after liver injury via sphingosine 1-phosphate receptor 2. J Lipid Res 50(3):556–564Google Scholar
  54. Iracheta-Vellve A, Calenda CD, Petrasek J, Ambade A, Kodys K, Adorini L, Szabo G (2018) FXR and TGR5 agonists ameliorate liver injury, steatosis, and inflammation after binge or prolonged alcohol feeding in mice. Hepatol Commun 2(11):1379–1391Google Scholar
  55. Ishii I, Friedman B, Ye X, Kawamura S, McGiffert C, Contos JJ, Kingsbury MA, Zhang G, Brown JH, Chun J (2001) Selective loss of sphingosine 1-phosphate signaling with no obvious phenotypic abnormality in mice lacking its G protein-coupled receptor, LP(B3)/EDG-3. J Biol Chem 276(36):33697–33704Google Scholar
  56. Isomoto H, Mott JL, Kobayashi S, Werneburg NW, Bronk SF, Haan S, Gores GJ (2007) Sustained IL-6/STAT-3 signaling in cholangiocarcinoma cells due to SOCS-3 epigenetic silencing. Gastroenterology 132(1):384–396Google Scholar
  57. Iwakiri Y, Groszmann RJ (2007) Vascular endothelial dysfunction in cirrhosis. J Hepatol 46(5):927–934Google Scholar
  58. Iwakiri Y, Shah V, Rockey DC (2014) Vascular pathobiology in chronic liver disease and cirrhosis - current status and future directions. J Hepatol 61(4):912–924Google Scholar
  59. Kageyama Y, Ikeda H, Watanabe N, Nagamine M, Kusumoto Y, Yashiro M, Satoh Y, Shimosawa T, Shinozaki K, Tomiya T, Inoue Y, Nishikawa T, Ohtomo N, Tanoue Y, Yokota H, Koyama T, Ishimaru K, Okamoto Y, Takuwa Y, Koike K, Yatomi Y (2012) Antagonism of sphingosine 1-phosphate receptor 2 causes a selective reduction of portal vein pressure in bile duct-ligated rodents. Hepatology 56(4):1427–1438Google Scholar
  60. Karababa A, Groos-Sahr K, Albrecht U, Keitel V, Shafigullina A, Görg B, Häussinger D (2017) Ammonia attenuates LPS-induced upregulation of pro-inflammatory cytokine mRNA in co-cultured astrocytes and microglia. Neurochem Res 42(3):737–749Google Scholar
  61. Karimian G, Buist-Homan M, Schmidt M, Tietge UJ, de Boer JF, Klappe K, Kok JW, Combettes L, Tordjmann T, Faber KN, Moshage H (2013) Sphingosine kinase-1 inhibition protects primary rat hepatocytes against bile salt-induced apoptosis. Biochim Biophys Acta 1832(12):1922–1929Google Scholar
  62. Kawamata Y, Fujii R, Hosoya M, Harada M, Yoshida H, Miwa M, Fukusumi S, Habata Y, Itoh T, Shintani Y, Hinuma S, Fujisawa Y, Fujino M (2003) A G protein-coupled receptor responsive to bile acids. J Biol Chem 278(11):9435–9440Google Scholar
  63. Keitel V, Häussinger D (2011) TGR5 in the biliary tree. Dig Dis 29(1):45–47Google Scholar
  64. Keitel V, Häussinger D (2012) Perspective: TGR5 (Gpbar-1) in liver physiology and disease. Clin Res Hepatol Gastroenterol 36(5):412–419Google Scholar
  65. Keitel V, Häussinger D (2013) TGR5 in cholangiocytes. Curr Opin Gastroenterol 29(3):299–304Google Scholar
  66. Keitel V, Häussinger D (2018) Role of TGR5 (GPBAR1) in liver disease. Semin Liver Dis 38(4):333–339Google Scholar
  67. Keitel V, Reinehr R, Gatsios P, Rupprecht C, Görg B, Selbach O, Häussinger D, Kubitz R (2007) The G-protein coupled bile salt receptor TGR5 is expressed in liver sinusoidal endothelial cells. Hepatology 45(3):695–704Google Scholar
  68. Keitel V, Kubitz R, Häussinger D (2008a) Endocrine and paracrine role of bile acids. World J Gastroenterol: WJG 14(37):5620–5629Google Scholar
  69. Keitel V, Donner M, Winandy S, Kubitz R, Häussinger D (2008b) Expression and function of the bile acid receptor TGR5 in Kupffer cells. Biochem Biophys Res Commun 372(1):78–84Google Scholar
  70. Keitel V, Cupisti K, Ullmer C, Knoefel WT, Kubitz R, Häussinger D (2009) The membrane-bound bile acid receptor TGR5 is localized in the epithelium of human gallbladders. Hepatology 50(3):861–870Google Scholar
  71. Keitel V, Görg B, Bidmon HJ, Zemtsova I, Spomer L, Zilles K, Häussinger D (2010a) The bile acid receptor TGR5 (Gpbar-1) acts as a neurosteroid receptor in brain. Glia 58(15):1794–1805Google Scholar
  72. Keitel V, Ullmer C, Häussinger D (2010b) The membrane-bound bile acid receptor TGR5 (Gpbar-1) is localized in the primary cilium of cholangiocytes. Biol Chem 391(7):785–789Google Scholar
  73. Keitel V, Reich M, Häussinger D (2015) TGR5: pathogenetic role and/or therapeutic target in fibrosing cholangitis? Clin Rev Allergy Immunol 48(2–3):218–225Google Scholar
  74. Kono M, Belyantseva IA, Skoura A, Frolenkov GI, Starost MF, Dreier JL, Lidington D, Bolz SS, Friedman TB, Hla T, Proia RL (2007) Deafness and stria vascularis defects in S1P2 receptor-null mice. J Biol Chem 282(14):10690–10696Google Scholar
  75. Kwong E, Li Y, Hylemon PB, Zhou H (2015) Bile acids and sphingosine-1-phosphate receptor 2 in hepatic lipid metabolism. Acta Pharm Sin B 5(2):151–157Google Scholar
  76. Lavoie B, Balemba OB, Godfrey C, Watson CA, Vassileva G, Corvera CU, Nelson MT, Mawe GM (2010) Hydrophobic bile salts inhibit gallbladder smooth muscle function via stimulation of GPBAR1 receptors and activation of KATP channels. J Physiol 588. (Pt 17:3295–3305Google Scholar
  77. Li C, Zheng S, You H, Liu X, Lin M, Yang L, Li L (2011a) Sphingosine 1-phosphate (S1P)/S1P receptors are involved in human liver fibrosis by action on hepatic myofibroblasts motility. J Hepatol 54(6):1205–1213Google Scholar
  78. Li T, Holmstrom SR, Kir S, Umetani M, Schmidt DR, Kliewer SA, Mangelsdorf DJ (2011b) The G protein-coupled bile acid receptor, TGR5, stimulates gallbladder filling. Mol Endocrinol 25(6):1066–1071Google Scholar
  79. Li S, Qiu M, Kong Y, Zhao X, Choi HJ, Reich M, Bunkelman BH, Liu Q, Hu S, Han M, Xie H, Rosenberg AZ, Keitel V, Kwon TH, Levi M, Li C, Wang W (2018) Bile acid G protein-coupled membrane receptor TGR5 modulates aquaporin 2-mediated water homeostasis. J Am Soc Nephrol 29(11):2658–2670Google Scholar
  80. Lieu T, Jayaweera G, Zhao P, Poole DP, Jensen D, Grace M, McIntyre P, Bron R, Wilson YM, Krappitz M, Haerteis S, Korbmacher C, Steinhoff MS, Nassini R, Materazzi S, Geppetti P, Corvera CU, Bunnett NW (2014) The bile acid receptor TGR5 activates the trpa1 channel to induce itch in mice. Gastroenterology 147(6):1417–1428Google Scholar
  81. Liu X, Yue S, Li C, Yang L, You H, Li L (2011) Essential roles of sphingosine 1-phosphate receptor types 1 and 3 in human hepatic stellate cells motility and activation. J Cell Physiol 226(9):2370–2377Google Scholar
  82. Liu W, Lan T, Xie X, Huang K, Peng J, Huang J, Shen X, Liu P, Huang H (2012) S1P2 receptor mediates sphingosine-1-phosphate-induced fibronectin expression via MAPK signaling pathway in mesangial cells under high glucose condition. Exp Cell Res 318(8):936–943Google Scholar
  83. Liu R, Zhao R, Zhou X, Liang X, Campbell DJ, Zhang X, Zhang L, Shi R, Wang G, Pandak WM, Sirica AE, Hylemon PB, Zhou H (2014) Conjugated bile acids promote cholangiocarcinoma cell invasive growth through activation of sphingosine 1-phosphate receptor 2. Hepatology 60(3):908–918Google Scholar
  84. Liu R, Li X, Qiang X, Luo L, Hylemon PB, Jiang Z, Zhang L, Zhou H (2015) Taurocholate induces cyclooxygenase-2 expression via the sphingosine 1-phosphate receptor 2 in a human cholangiocarcinoma cell line. J Biol Chem 290(52):30988–31002Google Scholar
  85. Lorenz JN, Arend LJ, Robitz R, Paul RJ, MacLennan AJ (2007) Vascular dysfunction in S1P2 sphingosine 1-phosphate receptor knockout mice. Am J Physiol Regul Integr Comp Physiol 292(1):R440–R446Google Scholar
  86. MacLennan AJ, Carney PR, Zhu WJ, Chaves AH, Garcia J, Grimes JR, Anderson KJ, Roper SN, Lee N (2001) An essential role for the H218/AGR16/Edg-5/LP(B2) sphingosine 1-phosphate receptor in neuronal excitability. Eur J Neurosci 14(2):203–209Google Scholar
  87. Makishima M, Okamoto AY, Repa JJ, Tu H, Learned RM, Luk A, Hull MV, Lustig KD, Mangelsdorf DJ, Shan B (1999) Identification of a nuclear receptor for bile acids. Science 284(5418):1362–1365Google Scholar
  88. Maroni L, Alpini G, Marzioni M (2014) Cholangiocarcinoma development: the resurgence of bile acids. Hepatology 60(3):795–797Google Scholar
  89. Martin RE, Bissantz C, Gavelle O, Kuratli C, Dehmlow H, Richter HG, Obst Sander U, Erickson SD, Kim K, Pietranico-Cole SL, Alvarez-Sanchez R, Ullmer C (2013) 2-Phenoxy-nicotinamides are potent agonists at the bile acid receptor GPBAR1 (TGR5). ChemMedChem 8(4):569–576Google Scholar
  90. Maruyama T, Miyamoto Y, Nakamura T, Tamai Y, Okada H, Sugiyama E, Nakamura T, Itadani H, Tanaka K (2002) Identification of membrane-type receptor for bile acids (M-BAR). Biochem Biophys Res Commun 298(5):714–719Google Scholar
  91. Maruyama T, Tanaka K, Suzuki J, Miyoshi H, Harada N, Nakamura T, Miyamoto Y, Kanatani A, Tamai Y (2006) Targeted disruption of G protein-coupled bile acid receptor 1 (Gpbar1/M-Bar) in mice. J Endocrinol 191(1):197–205Google Scholar
  92. Masyuk AI, Huang BQ, Radtke BN, Gajdos GB, Splinter PL, Masyuk TV, Gradilone SA, LaRusso NF (2013) Ciliary subcellular localization of TGR5 determines the cholangiocyte functional response to bile acid signaling. Am J Physiol Gastrointest Liver Physiol 304(11):G1013–G1024Google Scholar
  93. Masyuk TV, Masyuk AI, LaRusso NF (2015) TGR5 in the cholangiociliopathies. Dig Dis 33(3):420–425Google Scholar
  94. Masyuk TV, Masyuk AI, Lorenzo Pisarello M, Howard BN, Huang BQ, Lee PY, Fung X, Sergienko E, Ardecky RJ, Chung TDY, Pinkerton AB, LaRusso NF (2017) TGR5 contributes to hepatic cystogenesis in rodents with polycystic liver diseases through cyclic adenosine monophosphate/Galphas signaling. Hepatology 66(4):1197–1218Google Scholar
  95. McMahan RH, Wang XX, Cheng LL, Krisko T, Smith M, El Kasmi K, Pruzanski M, Adorini L, Golden-Mason L, Levi M, Rosen HR (2013) Bile acid receptor activation modulates hepatic monocyte activity and improves nonalcoholic fatty liver disease. J Biol Chem 288(17):11761–11770Google Scholar
  96. McMillin M, Frampton G, Grant S, Khan S, Diocares J, Petrescu A, Wyatt A, Kain J, Jefferson B, DeMorrow S (2017) Bile acid-mediated sphingosine-1-phosphate receptor 2 signaling promotes neuroinflammation during hepatic encephalopathy in mice. Front Cell Neurosci 11:191Google Scholar
  97. Meng H, Lee VM (2009) Differential expression of sphingosine-1-phosphate receptors 1-5 in the developing nervous system. Dev Dyn 238(2):487–500Google Scholar
  98. Nagahashi M, Takabe K, Liu R, Peng K, Wang X, Wang Y, Hait NC, Wang X, Allegood JC, Yamada A, Aoyagi T, Liang J, Pandak WM, Spiegel S, Hylemon PB, Zhou H (2015) Conjugated bile acid-activated S1P receptor 2 is a key regulator of sphingosine kinase 2 and hepatic gene expression. Hepatology 61(4):1216–1226Google Scholar
  99. Nagahashi M, Yuza K, Hirose Y, Nakajima M, Ramanathan R, Hait NC, Hylemon PB, Zhou H, Takabe K, Wakai T (2016) The roles of bile acids and sphingosine-1-phosphate signaling in the hepatobiliary diseases. J Lipid Res 57(9):1636–1643Google Scholar
  100. Park J, Tadlock L, Gores GJ, Patel T (1999) Inhibition of interleukin 6-mediated mitogen-activated protein kinase activation attenuates growth of a cholangiocarcinoma cell line. Hepatology 30(5):1128–1133Google Scholar
  101. Parks DJ, Blanchard SG, Bledsoe RK, Chandra G, Consler TG, Kliewer SA, Stimmel JB, Willson TM, Zavacki AM, Moore DD, Lehmann JM (1999) Bile acids: natural ligands for an orphan nuclear receptor. Science 284(5418):1365–1368Google Scholar
  102. Pean N, Doignon I, Garcin I, Besnard A, Julien B, Liu B, Branchereau S, Spraul A, Guettier C, Humbert L, Schoonjans K, Rainteau D, Tordjmann T (2013) The receptor TGR5 protects the liver from bile acid overload during liver regeneration in mice. Hepatology 58(4):1451–1460Google Scholar
  103. Perino A, Schoonjans K (2015) TGR5 and immunometabolism: insights from physiology and pharmacology. Trends Pharmacol Sci 36(12):847–857Google Scholar
  104. Perino A, Pols TW, Nomura M, Stein S, Pellicciari R, Schoonjans K (2014) TGR5 reduces macrophage migration through mTOR-induced C/EBPbeta differential translation. J Clin Invest 124(12):5424–5436Google Scholar
  105. Pols TW, Noriega LG, Nomura M, Auwerx J, Schoonjans K (2011a) The bile acid membrane receptor TGR5 as an emerging target in metabolism and inflammation. J Hepatol 54(6):1263–1272Google Scholar
  106. Pols TW, Nomura M, Harach T, Lo Sasso G, Oosterveer MH, Thomas C, Rizzo G, Gioiello A, Adorini L, Pellicciari R, Auwerx J, Schoonjans K (2011b) TGR5 activation inhibits atherosclerosis by reducing macrophage inflammation and lipid loading. Cell Metab 14(6):747–757Google Scholar
  107. Poole DP, Godfrey C, Cattaruzza F, Cottrell GS, Kirkland JG, Pelayo JC, Bunnett NW, Corvera CU (2010) Expression and function of the bile acid receptor GpBAR1 (TGR5) in the murine enteric nervous system. Neurogastroenterol Motil 22(7):814–825. e227–8Google Scholar
  108. Rajagopal S, Kumar DP, Mahavadi S, Bhattacharya S, Zhou R, Corvera CU, Bunnett NW, Grider JR, Murthy KS (2013) Activation of G protein-coupled bile acid receptor, TGR5, induces smooth muscle relaxation via both Epac- and PKA-mediated inhibition of RhoA/Rho kinase pathway. Am J Physiol Gastrointest Liver Physiol 304(5):G527–G535Google Scholar
  109. Raufman JP, Chen Y, Cheng K, Compadre C, Compadre L, Zimniak P (2002a) Selective interaction of bile acids with muscarinic receptors: a case of molecular mimicry. Eur J Pharmacol 457(2–3):77–84Google Scholar
  110. Raufman JP, Chen Y, Zimniak P, Cheng K (2002b) Deoxycholic acid conjugates are muscarinic cholinergic receptor antagonists. Pharmacology 65(4):215–221Google Scholar
  111. Reich M, Deutschmann K, Sommerfeld A, Klindt C, Kluge S, Kubitz R, Ullmer C, Knoefel WT, Herebian D, Mayatepek E, Häussinger D, Keitel V (2016) TGR5 is essential for bile acid-dependent cholangiocyte proliferation in vivo and in vitro. Gut 65(3):487–501Google Scholar
  112. Reich M, Klindt C, Deutschmann K, Spomer L, Häussinger D, Keitel V (2017) Role of the G protein-coupled bile acid receptor TGR5 in liver damage. Dig Dis 35(3):235–240Google Scholar
  113. Reinehr R, Fischer R, Häussinger D (2002) Regulation of endothelin-A receptor sensitivity by cyclic adenosine monophosphate in rat hepatic stellate cells. Hepatology 36(4 Pt 1):861–873Google Scholar
  114. Reinehr R, Graf D, Häussinger D (2003) Bile salt-induced hepatocyte apoptosis involves epidermal growth factor receptor-dependent CD95 tyrosine phosphorylation. Gastroenterology 125(3):839–853Google Scholar
  115. Reinehr R, Becker S, Wettstein M, Häussinger D (2004) Involvement of the Src family kinase yes in bile salt-induced apoptosis. Gastroenterology 127(5):1540–1557Google Scholar
  116. Reinehr R, Becker S, Keitel V, Eberle A, Grether-Beck S, Häussinger D (2005) Bile salt-induced apoptosis involves NADPH oxidase isoform activation. Gastroenterology 129(6):2009–2031Google Scholar
  117. Renga B, Bucci M, Cipriani S, Carino A, Monti MC, Zampella A, Gargiulo A, d’Emmanuele di Villa Bianca R, Distrutti E, Fiorucci S (2015a) Cystathionine gamma-lyase, a H2S-generating enzyme, is a GPBAR1-regulated gene and contributes to vasodilation caused by secondary bile acids. Am J Physiol Heart Circ Physiol 309(1):H114–H126Google Scholar
  118. Renga B, Cipriani S, Carino A, Simonetti M, Zampella A, Fiorucci S (2015b) Reversal of endothelial dysfunction by GPBAR1 agonism in portal hypertension involves a AKT/FOXOA1 dependent regulation of H2S generation and endothelin-1. PLoS One 10(11):e0141082Google Scholar
  119. Roth JD, Feigh M, Veidal SS, Fensholdt LK, Rigbolt KT, Hansen HH, Chen LC, Petitjean M, Friley W, Vrang N, Jelsing J, Young M (2018) INT-767 improves histopathological features in a diet-induced ob/ob mouse model of biopsy-confirmed non-alcoholic steatohepatitis. World J Gastroenterol 24(2):195–210Google Scholar
  120. Sanchez T, Skoura A, Wu MT, Casserly B, Harrington EO, Hla T (2007) Induction of vascular permeability by the sphingosine-1-phosphate receptor-2 (S1P2R) and its downstream effectors ROCK and PTEN. Arterioscler Thromb Vasc Biol 27(6):1312–1318Google Scholar
  121. Santos-Cortez RL, Faridi R, Rehman AU, Lee K, Ansar M, Wang X, Morell RJ, Isaacson R, Belyantseva IA, Dai H, Acharya A, Qaiser TA, Muhammad D, Ali RA, Shams S, Hassan MJ, Shahzad S, Raza SI, Bashir ZE, Smith JD, Nickerson DA, Bamshad MJ, University of Washington Center for Mendelian Genomics, Riazuddin S, Ahmad W, Friedman TB, Leal SM (2016) Autosomal-recessive hearing impairment due to rare missense variants within S1PR2. Am J Hum Genet 98(2):331–338Google Scholar
  122. Sato H, Macchiarulo A, Thomas C, Gioiello A, Une M, Hofmann AF, Saladin R, Schoonjans K, Pellicciari R, Auwerx J (2008) Novel potent and selective bile acid derivatives as TGR5 agonists: biological screening, structure-activity relationships, and molecular modeling studies. J Med Chem 51(6):1831–1841Google Scholar
  123. Sato M, Ikeda H, Uranbileg B, Kurano M, Saigusa D, Aoki J, Maki H, Kudo H, Hasegawa K, Kokudo N, Yatomi Y (2016) Sphingosine kinase-1, S1P transporter spinster homolog 2 and S1P2 mRNA expressions are increased in liver with advanced fibrosis in human. Sci Rep 6:32119Google Scholar
  124. Sawitza I, Kordes C, Götze S, Herebian D, Häussinger D (2015) Bile acids induce hepatic differentiation of mesenchymal stem cells. Sci Rep 5:13320Google Scholar
  125. Sheikh Abdul Kadir SH, Miragoli M, Abu-Hayyeh S, Moshkov AV, Xie Q, Keitel V, Nikolaev VO, Williamson C, Gorelik J (2010) Bile acid-induced arrhythmia is mediated by muscarinic M2 receptors in neonatal rat cardiomyocytes. PLoS One 5(3):e9689Google Scholar
  126. Sodeman T, Bronk SF, Roberts PJ, Miyoshi H, Gores GJ (2000) Bile salts mediate hepatocyte apoptosis by increasing cell surface trafficking of Fas. Am J Physiol Gastrointest Liver Physiol 278(6):G992–G999Google Scholar
  127. Sommerfeld A, Reinehr R, Häussinger D (2015) Tauroursodeoxycholate protects rat hepatocytes from bile acid-induced apoptosis via beta1-integrin- and protein kinase A-dependent mechanisms. Cell Physiol Biochem 36(3):866–883Google Scholar
  128. Soroka CJ, Assis DN, Alrabadi LS, Roberts S, Cusack L, Jaffe AB, Boyer JL (2018) Bile-derived organoids from patients with primary sclerosing cholangitis recapitulate their inflammatory immune profile. Hepatology.
  129. Staudinger JL, Goodwin B, Jones SA, Hawkins-Brown D, MacKenzie KI, LaTour A, Liu Y, Klaassen CD, Brown KK, Reinhard J, Willson TM, Koller BH, Kliewer SA (2001) The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity. Proc Natl AcadSciUSA 98(6):3369–3374Google Scholar
  130. Studer E, Zhou X, Zhao R, Wang Y, Takabe K, Nagahashi M, Pandak WM, Dent P, Spiegel S, Shi R, Xu W, Liu X, Bohdan P, Zhang L, Zhou H, Hylemon PB (2012) Conjugated bile acids activate the sphingosine-1-phosphate receptor 2 in primary rodent hepatocytes. Hepatology 55(1):267–276Google Scholar
  131. Tacke F (2017) Targeting hepatic macrophages to treat liver diseases. J Hepatol 66(6):1300–1312Google Scholar
  132. Thomas C, Gioiello A, Noriega L, Strehle A, Oury J, Rizzo G, Macchiarulo A, Yamamoto H, Mataki C, Pruzanski M, Pellicciari R, Auwerx J, Schoonjans K (2009) TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab 10(3):167–177Google Scholar
  133. Tietz PS, Marinelli RA, Chen XM, Huang B, Cohn J, Kole J, McNiven MA, Alper S, LaRusso NF (2003) Agonist-induced coordinated trafficking of functionally related transport proteins for water and ions in cholangiocytes. J Biol Chem 278(22):20413–20419Google Scholar
  134. Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson A, Kampf C, Sjostedt E, Asplund A, Olsson I, Edlund K, Lundberg E, Navani S, Szigyarto CA, Odeberg J, Djureinovic D, Takanen JO, Hober S, Alm T, Edqvist PH, Berling H, Tegel H, Mulder J, Rockberg J, Nilsson P, Schwenk JM, Hamsten M, von Feilitzen K, Forsberg M, Persson L, Johansson F, Zwahlen M, von Heijne G, Nielsen J, Ponten F (2015) Proteomics. Tissue-based map of the human proteome. Science 347(6220):1260419Google Scholar
  135. Vassileva G, Golovko A, Markowitz L, Abbondanzo SJ, Zeng M, Yang S, Hoos L, Tetzloff G, Levitan D, Murgolo NJ, Keane K, Davis HR Jr, Hedrick J, Gustafson EL (2006) Targeted deletion of Gpbar1 protects mice from cholesterol gallstone formation. Biochem J 398(3):423–430Google Scholar
  136. Velazquez-Villegas LA, Perino A, Lemos V, Zietak M, Nomura M, Pols TWH, Schoonjans K (2018) TGR5 signalling promotes mitochondrial fission and beige remodelling of white adipose tissue. Nat Commun 9(1):245Google Scholar
  137. Wammers M, Schupp AK, Bode JG, Ehlting C, Wolf S, Deenen R, Köhrer K, Häussinger D, Graf D (2018) Reprogramming of pro-inflammatory human macrophages to an anti-inflammatory phenotype by bile acids. Sci Rep 8(1):255Google Scholar
  138. Wang H, Chen J, Hollister K, Sowers LC, Forman BM (1999) Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol Cell 3(5):543–553Google Scholar
  139. Wang YD, Chen WD, Yu D, Forman BM, Huang W (2011) The G-protein-coupled bile acid receptor, Gpbar1 (TGR5), negatively regulates hepatic inflammatory response through antagonizing nuclear factor kappa light-chain enhancer of activated B cells (NF-kappaB) in mice. Hepatology 54(4):1421–1432Google Scholar
  140. Wang C, Mao J, Redfield S, Mo Y, Lage JM, Zhou X (2014) Systemic distribution, subcellular localization and differential expression of sphingosine-1-phosphate receptors in benign and malignant human tissues. Exp Mol Pathol 97(2):259–265Google Scholar
  141. Wang XX, Edelstein MH, Gafter U, Qiu L, Luo Y, Dobrinskikh E, Lucia S, Adorini L, D'Agati VD, Levi J, Rosenberg A, Kopp JB, Gius DR, Saleem MA, Levi M (2016) G protein-coupled bile acid receptor TGR5 activation inhibits kidney disease in obesity and diabetes. J Am Soc Nephrol 27(5):1362–1378Google Scholar
  142. Wang Y, Aoki H, Yang J, Peng K, Liu R, Li X, Qiang X, Sun L, Gurley EC, Lai G, Zhang L, Liang G, Nagahashi M, Takabe K, Pandak WM, Hylemon PB, Zhou H (2017) The role of sphingosine 1-phosphate receptor 2 in bile-acid-induced cholangiocyte proliferation and cholestasis-induced liver injury in mice. Hepatology 65(6):2005–2018Google Scholar
  143. Ward JB, Mroz MS, Keely SJ (2013) The bile acid receptor, TGR5, regulates basal and cholinergic-induced secretory responses in rat colon. Neurogastroenterol Motil 25(8):708–711Google Scholar
  144. Watanabe M, Houten SM, Mataki C, Christoffolete MA, Kim BW, Sato H, Messaddeq N, Harney JW, Ezaki O, Kodama T, Schoonjans K, Bianco AC, Auwerx J (2006) Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 439(7075):484–489Google Scholar
  145. Welzel TM, Graubard BI, El-Serag HB, Shaib YH, Hsing AW, Davila JA, McGlynn KA (2007) Risk factors for intrahepatic and extrahepatic cholangiocarcinoma in the United States: a population-based case-control study. Clin Gastroenterol Hepatol 5(10):1221–1228Google Scholar
  146. Williams MJ, Clouston AD, Forbes SJ (2014) Links between hepatic fibrosis, ductular reaction, and progenitor cell expansion. Gastroenterology 146(2):349–356Google Scholar
  147. Wu T (2005) Cyclooxygenase-2 and prostaglandin signaling in cholangiocarcinoma. Biochim Biophys Acta 1755(2):135–150Google Scholar
  148. Xie W, Radominska-Pandya A, Shi Y, Simon CM, Nelson MC, Ong ES, Waxman DJ, Evans RM (2001) An essential role for nuclear receptors SXR/PXR in detoxification of cholestatic bile acids. Proc Natl Acad Sci U S A 98(6):3375–3380Google Scholar
  149. Xu W, Lu C, Zhang F, Shao J, Zheng S (2016) Dihydroartemisinin restricts hepatic stellate cell contraction via an FXR-S1PR2-dependent mechanism. IUBMB Life 68(5):376–387Google Scholar
  150. Yang H, Li TW, Peng J, Tang X, Ko KS, Xia M, Aller MA (2011) A mouse model of cholestasis-associated cholangiocarcinoma and transcription factors involved in progression. Gastroenterology 141(1):378–388. 388.e1–4Google Scholar
  151. Yang L, Han Z, Tian L, Mai P, Zhang Y, Wang L, Li L (2015) Sphingosine 1-phosphate receptor 2 and 3 mediate bone marrow-derived monocyte/macrophage motility in cholestatic liver injury in mice. Sci Rep 5:13423Google Scholar
  152. Yang J, Yang L, Tian L, Ji X, Yang L, Li L (2018) Sphingosine 1-phosphate (S1P)/S1P receptor2/3 axis promotes inflammatory M1 polarization of bone marrow-derived monocyte/macrophage via G(alpha)i/o/PI3K/JNK pathway. Cell Physiol Biochem 49(5):1677–1693Google Scholar
  153. Zhang G, Yang L, Kim GS, Ryan K, Lu S, O'Donnell RK, Spokes K, Shapiro N, Aird WC, Kluk MJ, Yano K, Sanchez T (2013) Critical role of sphingosine-1-phosphate receptor 2 (S1PR2) in acute vascular inflammation. Blood 122(3):443–455Google Scholar
  154. Zhou H, Hylemon PB (2014) Bile acids are nutrient signaling hormones. Steroids 86:62–68Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Clinic for Gastroenterology, Hepatology and Infectious DiseasesUniversity Hospital Düsseldorf, Medical Faculty at Heinrich-Heine-UniversityDüsseldorfGermany

Personalised recommendations