Advertisement

pp 1-28 | Cite as

Lipids and Membrane Microdomains: The Glycerolipid and Alkylphosphocholine Class of Cancer Chemotherapeutic Drugs

  • Vanina ZarembergEmail author
  • Suriakarthiga Ganesan
  • Mark Mahadeo
Chapter
Part of the Handbook of Experimental Pharmacology book series

Abstract

Synthetic antitumor lipids are metabolically stable lysophosphatidylcholine derivatives, encompassing a class of non-mutagenic drugs that selectively target cancerous cells. In this chapter we review the literature as relates to the clinical efficacy of these antitumor lipid drugs and how our understanding of their mode of action has evolved alongside key advances in our knowledge of membrane structure, organization, and function. First, the history of the development of this class of drugs is described, providing a summary of clinical outcomes of key members including edelfosine, miltefosine, perifosine, erufosine, and erucylphosphocholine. A detailed description of the biophysical properties of these drugs and specific drug–lipid interactions which may contribute to the selectivity of the antitumor lipids for cancer cells follows. An updated model on the mode of action of these lipid drugs as membrane disorganizing agents is presented. Membrane domain organization as opposed to targeting specific proteins on membranes is discussed. By altering membranes, these antitumor lipids inhibit many survival pathways while activating pro-apoptotic signals leading to cell demise.

Keywords

Antitumor lipids Lateral membrane organization Lipid rafts Lysophosphatidylcholine analogues Membrane microdomains Non-mutagenic 

References

  1. Adam RM, Mukhopadhyay NK, Kim J, Di Vizio D, Cinar B, Boucher K et al (2007) Cholesterol sensitivity of endogenous and myristoylated Akt. Cancer Res 67(13):6238–6246Google Scholar
  2. Alam MM, Joh EH, Kim Y, Oh YI, Hong J, Kim B et al (2012) Synthesis and biological evaluation of cyclopentane-linked alkyl phosphocholines as potential anticancer agents that act by inhibiting Akt phosphorylation. Eur J Med Chem 47:485–492Google Scholar
  3. Allen JA, Halverson-Tamboli RA, Rasenick MM (2007) Lipid raft microdomains and neurotransmitter signalling. Nat Rev Neurosci 8:128–140Google Scholar
  4. Andreesen R, Modolell M, Weltzien HU, Eibl H, Common HH, Löhr GW, Munder PG (1978) Selective destruction of human leukemic cells by alkyl-lysophospholipids. Cancer Res 38(11 Pt 1):3894–3899Google Scholar
  5. Andreesen R, Modolell M, Munder PG (1979) Selective sensitivity of chronic myelogenous leukemia cell populations to alkyl-lysophospholipids. Blood 54:519–523Google Scholar
  6. Arnold D, Weltzien HU, Westphal O (1967) Concerning the synthesis of lysolecithin and its ether analogs. Justus Liebigs Ann Chem 709:234–239Google Scholar
  7. Arnold B, Reuther R, Weltzien HU (1978) Distribution and metabolism of synthetic alkyl analogs of lysophosphatidylcholine in mice. Biochim Biophys Acta 530:47–55Google Scholar
  8. Arthur G, Bittman R (1998) The inhibition of cell signaling pathways by antitumor ether lipids. Biochim Biophys Acta 1390(1):85–102Google Scholar
  9. Ashagbley A, Samadder P, Bittman R, Erukulla RK, Byun HS, Arthur G (1996) Synthesis of ether-linked analogues of lysophosphatidate and their effect on the proliferation of human epithelial cancer cells in vitro. Anticancer Res 16(4A):1813–1818Google Scholar
  10. Aznar MÁ, Lasa-Saracíbar B, Blanco-Prieto MJ (2014) Edelfosine lipid nanoparticles overcome multidrug resistance in K-562 leukemia cells by a caspase-independent mechanism. Mol Pharm 11:2650–2658Google Scholar
  11. Baburina I, Jackowski S (1998) Apoptosis triggered by 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine is prevented by increased expression of CTP:phosphocholine cytidylyltransferase. J Biol Chem 273(4):2169–2173Google Scholar
  12. Bailey HH, Mahoney MR, Ettinger DS, Maples WJ, Fracasso PM, Traynor AM et al (2006) Phase II study of daily oral perifosine in patients with advanced soft tissue sarcoma. Cancer 107(10):2462–2467Google Scholar
  13. Becher OJ, Millard NE, Modak S, Kushner BH, Haque S, Spasojevic I et al (2017) A phase I study of single-agent perifosine for recurrent or refractory pediatric CNS and solid tumors. PLoS One 12(6):e0178593Google Scholar
  14. Benvegnu DJ, McConnell HM (1992) Line tension between liquid domains in lipid monolayers. J Phys Chem 96:6820–6824Google Scholar
  15. Berdel WE (1982) Antineoplastic activity of synthetic lysophospholipid analogs. Blut 44:71–78Google Scholar
  16. Berdel WE, Bausert WR, Fink U, Rastetter J, Munder PG (1981a) Anti-tumor action of alkyl-lysophospholipids (review). Anticancer Res 1(6):345–352Google Scholar
  17. Berdel WE, Fink U, Egger B, Reichert A, Munder PG, Rastetter J (1981b) Inhibition by alkyl-lysophospholipids of tritiated thymidine uptake in cells of human malignant urologic tumors. J Natl Cancer Inst 66(5):813–817Google Scholar
  18. Berdel WE, Fromm M, Fink U, Pahlke W, Bicker U, Reichert A, Rastetter J (1983a) Cytotoxicity of thioether-lysophospholipids in leukemias and tumors of human origin. Cancer Res 43(11):5538–5543Google Scholar
  19. Berdel WE, Greiner E, Fink U, Stavrou D, Reichert A, Rastetter J et al (1983b) Cytotoxicity of alkyl-lysophospholipid derivatives and low-alkyl-cleavage enzyme activities in rat brain tumor cells. Cancer Res 43(2):541–545Google Scholar
  20. Berdel WE, Fink U, Rastetter J (1987) Clinical phase I pilot study of the alkyl lysophospholipid derivative ET-18-OCH3 1. Lipids 22(11):967–969Google Scholar
  21. Bhattacharya SK et al (2007) Phase 4 trial of miltefosine for the treatment of Indian visceral leishmaniasis. J Infect Dis 196:591–598Google Scholar
  22. Boggs KP, Rock CO, Jackowski S (1995) Lysophosphatidylcholine and 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine inhibit the CDP-choline pathway of phosphatidylcholine synthesis at the CTP:phosphocholine cytidylyltransferase step. J Biol Chem 270(13):7757–7764Google Scholar
  23. Brachwitz H, Langen P, Hintsche R, Schildt J (1982) Halo lipids. V. Synthesis, nuclear magnetic resonance spectra and cytostatic properties of halo analogues of alkyllysophospholipids. Chem Phys Lipids 31:33–52Google Scholar
  24. Brancucci NMB, Gerdt JP, Wang C, De Niz M, Philip N, Adapa SR et al (2017) Lysophosphatidylcholine regulates sexual stage differentiation in the human malaria parasite Plasmodium falciparum. Cell 171(7):1532–1544.e15Google Scholar
  25. Brown DA, London E (1998a) Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol 14:111–136Google Scholar
  26. Brown DA, London E (1998b) Structure and origin of ordered lipid domains in biological membranes. J Membr Biol 164:103–114Google Scholar
  27. Busto JV, Sot J, Goni FM, Mollinedo F, Alonso A (2007) Surface-active properties of the antitumour ether lipid 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine (edelfosine). Biochim Biophys Acta 1768:1855–1860Google Scholar
  28. Busto JV, del Canto-Jañez E, Goñi F, Mollinedo F, Alonso A (2008) Combination of the anti-tumour cell ether lipid edelfosine with sterols abolishes haemolytic side effects of the drug. J Chem Biol 1:89–94Google Scholar
  29. Chakrabandhu K, Hérincs Z, Huault S, Dost B, Peng L, Conchonaud F et al (2007) Palmitoylation is required for efficient Fas cell death signaling. EMBO J 26(1):209–220Google Scholar
  30. Chen R, Brady E, McIntyre TM (2011) Human TMEM30a promotes uptake of antitumor and bioactive choline phospholipids into mammalian cells. J Immunol 186(5):3215–3225Google Scholar
  31. Chignard M, Le Couedic JP, Tence M, Vargaftig BB, Benveniste J (1979) The role of platelet-activating factor in platelet aggregation. Nature 279(5716):799–800Google Scholar
  32. Clayman RV, Gonzalez R, Elliott AY, Gleason DE, Dempsey ME (1983) Cholesterol accumulation in heterotransplanted renal cell cancer. J Urol 129(3):621–624Google Scholar
  33. Croft SL, Neal RA, Pendergast W, Chan JH (1987) The activity of alkyl phosphorylcholines and related derivatives against Leishmania donovani. Biochem Pharmacol 36(16):2633–2636Google Scholar
  34. Crul M et al (2002) Phase I and pharmacological study of daily oral administration of perifosine (D-21266) in patients with advanced solid tumours. Eur J Cancer 38:1615–1621Google Scholar
  35. Cuesta-Marbán Á, Botet J, Czyz O, Cacharro LM, Gajate C, Hornillos V et al (2013) Drug uptake, lipid rafts, and vesicle trafficking modulate resistance to an anticancer lysophosphatidylcholine analogue in yeast. J Biol Chem 288(12):8405–8418Google Scholar
  36. Czyz O, Bitew T, Cuesta-Marbán A, McMaster CR, Mollinedo F, Zaremberg V (2013) Alteration of plasma membrane organization by an anticancer lysophosphatidylcholine analogue induces intracellular acidification and internalization of plasma membrane transporters in yeast. J Biol Chem 288(12):8419–8432Google Scholar
  37. Dorlo TPC, Balasegaram M, Beijnen JH, de Vries PJ (2012) Miltefosine: a review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. J Antimicrob Chemother 67(11):2576–2597Google Scholar
  38. dos Santos GA, Thome CH, Ferreira GA, Yoneda JS, Nobre TM, Daghastanli KR et al (2010) Interaction of 10-(octyloxy) decyl-2-(trimethylammonium) ethyl phosphate with mimetic membranes and cytotoxic effect on leukemic cells. Biochim Biophys Acta 1798:1714–1723Google Scholar
  39. Drings P, Günther I, Gatzemeier U, Ulbrich F, Khanavkar B, Schreml W et al (1992) Final evaluation of a phase II study on the effect of edelfosine (an ether lipid) in advanced non-small-cell bronchogenic carcinoma. Oncol Res Treat 15(5):375–382Google Scholar
  40. Duclos RI Jr, Makriyannis A (1992) Syntheses of all four stereoisomers which are conformationally constrained 1, 4-dioxanyl analogs of the antineoplastic ether lipid ET-18-OCH3. J Org Chem 57:6156–6163Google Scholar
  41. Dummer R, Krasovec M, Röger J, Sindermann H, Burg G (1993) Topical administration of hexadecylphosphocholine in patients with cutaneous lymphomas: results of a phase I/II study. J Am Acad Dermatol 29(6):963–970Google Scholar
  42. Edidin M (2003) The state of lipid rafts: from model membranes to cells. Annu Rev Biophys Biomol Struct 32:257–283Google Scholar
  43. Epand RM (1990) Relationship of phospholipid hexagonal phases to biological phenomena. Biochem Cell Biol 68:17–23Google Scholar
  44. Erdlenbruch B, Jendrossek V, Marx M, Hunold A, Eibl H, Lakomek M (1998) Antitumor effects of erucylphosphocholine on brain tumor cells in vitro and in vivo. Anticancer Res 18(4A):2551–2557Google Scholar
  45. Fiegl M, Lindner LH, Juergens M, Eibl H, Hiddemann W, Braess J (2008) Erufosine, a novel alkylphosphocholine, in acute myeloid leukemia: single activity and combination with other antileukemic drugs. Cancer Chemother Pharmacol 62(2):321–329Google Scholar
  46. Figg WD, Monga M, Headlee D, Shah A, Chau CH, Peer C et al (2014) A phase I and pharmacokinetic study of oral perifosine with different loading schedules in patients with refractory neoplasms. Cancer Chemother Pharmacol 74(5):955–967Google Scholar
  47. Folmer DE, Mok KS, de Wee SW, Duijst S, Hiralall JK, Seppen J et al (2012) Cellular localization and biochemical analysis of mammalian CDC50A, a glycosylated β-subunit for P4 ATPases. J Histochem Cytochem 60(3):205–218Google Scholar
  48. Frisz JF, Lou K, Klitzing HA, Hanafin WP, Lizunov V, Wilson RL, Carpenter KJ, Kim R, Hutcheon ID, Zimmerberg J et al (2013) Direct chemical evidence for sphingolipid domains in the plasma membranes of fibroblasts. Proc Natl Acad Sci U S A 110:E613–E622Google Scholar
  49. Fujiwara K, Modest EJ, Welander CE, Wallen CA (1989) Cytotoxic interactions of heat and an ether lipid analogue in human ovarian carcinoma cells. Cancer Res 49(22):6285–6289Google Scholar
  50. Gajate C, Mollinedo F (2001) The antitumor ether lipid ET-18-OCH(3) induces apoptosis through translocation and capping of Fas/CD95 into membrane rafts in human leukemic cells. Blood 98(13):3860–3863Google Scholar
  51. Gajate C, Mollinedo F (2002) Biological activities, mechanisms of action and biomedical prospect of the antitumor ether phospholipid ET-18-OCH(3) (edelfosine), a proapoptotic agent in tumor cells. Curr Drug Metab 3(5):491–525Google Scholar
  52. Gajate C, Mollinedo F (2007) Edelfosine and perifosine induce selective apoptosis in multiple myeloma by recruitment of death receptors and downstream signaling molecules into lipid rafts. Blood 109(2):711–719Google Scholar
  53. Gajate C, Fonteriz RI, Cabaner C, Alvarez-Noves G, Alvarez-Rodriguez Y, Modolell M, Mollinedo F (2000a) Intracellular triggering of Fas, independently of FasL, as a new mechanism of antitumor ether lipid-induced apoptosis. Int J Cancer 85(5):674–682Google Scholar
  54. Gajate C, Santos-Beneit AM, Macho A, Lazaro M d C, Hernandez-De Rojas A, Modolell M et al (2000b) Involvement of mitochondria and caspase-3 in ET-18-OCH3-induced apoptosis of human leukemic cells. Int J Cancer 86(2):208–218Google Scholar
  55. Gajate C, del Canto-Jañez E, Acuña AU, Amat-Guerri F, Geijo E, Santos-Beneit AM et al (2004) Intracellular triggering of fas aggregation and recruitment of apoptotic molecules into fas-enriched rafts in selective tumor cell apoptosis. J Exp Med 200(3):353–365Google Scholar
  56. Gajate C, Gonzalez-Camacho F, Mollinedo F (2009) Involvement of raft aggregates enriched in Fas/CD95 death-inducing signaling complex in the antileukemic action of edelfosine in Jurkat cells. PLoS One 4(4):e5044Google Scholar
  57. Garcia-Saez AJ, Chiantia S, Schwille P (2007) Effect of line tension on the lateral organization of lipid membranes. J Biol Chem 282:33537–33544Google Scholar
  58. George KS, Wu S (2012) Lipid raft: a floating island of death or survival. Toxicol Appl Pharmacol 259:311–319Google Scholar
  59. Ghobrial IM et al (2010) Clinical and translational studies of a phase II trial of the novel oral Akt inhibitor perifosine in relapsed or relapsed/refractory Waldenstrom’s macroglobulinemia. Clin Cancer Res 16:1033–1041Google Scholar
  60. Gil C, Molina E, Plana M, Carabaza A, Cabré F, Mauleón D et al (1996) Differential effect of alkyl chain-modified ether lipids on protein kinase C autophosphorylation and histone phosphorylation. Biochem Pharmacol 52(12):1843–1847Google Scholar
  61. Gills JJ, Dennis PA (2009) Perifosine: update on a novel Akt inhibitor. Curr Oncol Rep 11(2):102–110Google Scholar
  62. Gomide AB, Thome CH, dos Santos GA, Ferreira GA, Faca VM, Rego EM et al (2013) Disrupting membrane raft domains by alkylphospholipids. Biochim Biophys Acta 1828:1384–1389Google Scholar
  63. Gorter E, Grendel F (1925) On bimolecular layers of lipoids on the chromocytes of the blood. J Exp Med 41:439–443Google Scholar
  64. Hąc-Wydro K, Dynarowicz-Łątka P (2010a) Searching for the role of membrane sphingolipids in selectivity of antitumor ether lipid–edelfosine. Colloids Surf B: Biointerfaces 81:492–497Google Scholar
  65. Hąc-Wydro K, Dynarowicz-Łątka P (2010b) The relationship between the concentration of ganglioside GM1 and antitumor activity of edelfosine—the Langmuir monolayer study. Colloids Surf B: Biointerfaces 81:385–388Google Scholar
  66. Hąc-Wydro K, Flasiński M, Wydro P, Dynarowicz-Łątka P (2012) Towards the understanding of the behavior of single-chained ether phospholipids in model biomembranes: interactions with phosphatidylethanolamines in Langmuir monolayers. Colloids Surf B: Biointerfaces 97:162–170Google Scholar
  67. Hanson PK, Malone L, Birchmore JL, Nichols JW (2003) Lem3p is essential for the uptake and potency of alkylphosphocholine drugs, edelfosine and miltefosine. J Biol Chem 278(38):36041–36050Google Scholar
  68. Head BP, Patel HH, Insel PA (2014) Interaction of membrane/lipid rafts with the cytoskeleton: impact on signaling and function: membrane/lipid rafts, mediators of cytoskeletal arrangement and cell signaling. Biochim Biophys Acta 1838:532–545Google Scholar
  69. Helfman DM, Barnes KC, Kinkade JM, Vogler WR, Shoji M, Kuo JF (1983) Phospholipid-sensitive Ca2+-dependent protein phosphorylation system in various types of leukemic cells from human patients and in human leukemic cell lines HL60 and K562, and its inhibition by alkyl-lysophospholipid. Cancer Res 43(6):2955–2961Google Scholar
  70. Henke G, Lindner LH, Vogeser M, Eibl H-J, Wörner J, Müller AC et al (2009) Pharmacokinetics and biodistribution of erufosine in nude mice--implications for combination with radiotherapy. Radiat Oncol 4:46Google Scholar
  71. Herrmann DB, Neumann HA (1987) Cytotoxic activity of the thioether phospholipid analogue BM 41.440 in primary human tumor cultures. Lipids 22(11):955–957Google Scholar
  72. Hilgard P, Klenner T, Stekar J, Unger C (1993) Alkylphosphocholines: a new class of membrane-active anticancer agents. Cancer Chemother Pharmacol 32(2):90–95Google Scholar
  73. Hoffman RD, Kligerman M, Sundt TM, Anderson ND, Shin HS (1982) Stereospecific chemoattraction of lymphoblastic cells by gradients of lysophosphatidylcholine. Proc Natl Acad Sci 79(10):3285–3289Google Scholar
  74. Hoffman DR, Hajdu J, Snyder F (1984) Cytotoxicity of platelet activating factor and related alkyl-phospholipid analogs in human leukemia cells, polymorphonuclear neutrophils, and skin fibroblasts. Blood 63(3):545–552Google Scholar
  75. Horowitz LF, Hirdes W, Suh B-C, Hilgemann DW, Mackie K, Hille B (2005) Phospholipase C in living cells. J Gen Physiol 126(3):243–262Google Scholar
  76. Houlihan WJ, Lee ML, Munder PG, Nemecek GM, Handley DA, Winslow CM et al (1987) Antitumor activity of SRI 62-834, a cyclic ether analog of ET-18-OCH3. Lipids 22(11):884–890Google Scholar
  77. Huang J, Feigenson GW (1999) A microscopic interaction model of maximum solubility of cholesterol in lipid bilayers. Biophys J 76:2142–2157Google Scholar
  78. Huang C, Mason JT, Stephenson FA, Levin IW (1984) Raman and phosphorus-31 NMR spectroscopic identification of a highly ordered lamellar phase in aqueous dispersions of 1-stearoyl-2-acetyl-sn-glycero-3-phosphorylcholine. J Phys Chem 88:6454–6458Google Scholar
  79. Huang C, Mason JT, Stephenson FA, Levin IW (1986) Polymorphic phase behavior of platelet-activating factor. Biophys J 49:587–595Google Scholar
  80. Hui SW, Huang CH (1986) X-ray diffraction evidence for fully interdigitated bilayers of 1-stearoyllysophosphatidylcholine. Biochemistry 25:1330–1335Google Scholar
  81. Israelachvili JN (1977) Refinement of the fluid-mosaic model of membrane structure. Biochim Biophys Acta 469:221–225Google Scholar
  82. Jaffrès P-A, Gajate C, Bouchet AM, Couthon-Gourvès H, Chantôme A, Potier-Cartereau M et al (2016) Alkyl ether lipids, ion channels and lipid raft reorganization in cancer therapy. Pharmacol Ther 165:114–131Google Scholar
  83. Jain MK, Crecely RW, Hille JDR, de Haas GH, Gruner SM (1985) Phase properties of the aqueous dispersions of n-octadecylphosphocholine. Biochim Biophys Acta 813:68–76Google Scholar
  84. Jendrossek V, Hammersen K, Erdlenbruch B, Kugler W, Krügener R, Eibl H, Lakomek M (2002) Structure-activity relationships of alkylphosphocholine derivatives: antineoplastic action on brain tumor cell lines in vitro. Cancer Chemother Pharmacol 50(1):71–79Google Scholar
  85. Jha TK et al (1999) Miltefosine, an oral agent, for the treatment of Indian visceral leishmaniasis. N Engl J Med 341:1795–1800Google Scholar
  86. Kamphorst JJ, Cross JR, Fan J, de Stanchina E, Mathew R, White EP et al (2013) Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids. Proc Natl Acad Sci 110(22):8882–8887Google Scholar
  87. Karnovsky MJ, Kleinfeld AM, Hoover RL, Klausner RD (1982) The concept of lipid domains in membranes. J Cell Biol 94:1–6Google Scholar
  88. Kelley EE, Modest EJ, Burns CP (1993) Unidirectional membrane uptake of the ether lipid antineoplastic agent edelfosine by L1210 cells. Biochem Pharmacol 45(12):2435–2439Google Scholar
  89. Koenigsmann MP, Notter M, Knauf WU, Papadimitriou CA, Oberberg D, Reufi B et al (1996) Chemopurging of peripheral blood-derived progenitor cells by alkyl-lysophospholipid and its effect on haematopoietic rescue after high-dose therapy. Bone Marrow Transplant 18(3):549–557Google Scholar
  90. Kondapaka SB, Singh SS, Dasmahapatra GP, Sausville EA, Roy KK (2003) Perifosine, a novel alkylphospholipid, inhibits protein kinase B activation. Mol Cancer Ther 2(11):1093–1103Google Scholar
  91. Kosano H, Takatani O (1988) Reduction of epidermal growth factor binding in human breast cancer cell lines by an alkyl-lysophospholipid. Cancer Res 48(21):6033–6036Google Scholar
  92. Krycer JR, Brown AJ (2013) Cholesterol accumulation in prostate cancer: a classic observation from a modern perspective. Biochim Biophys Acta 1835(2):219–229Google Scholar
  93. Kuhlencord A, Maniera T, Eibl H, Unger C (1992) Hexadecylphosphocholine: oral treatment of visceral leishmaniasis in mice. Antimicrob Agents Chemother 36(8):1630–1634Google Scholar
  94. Kusumi A, Fujiwara TK, Morone N, Yoshida KJ, Chadda R, Xie M et al (2012) Membrane mechanisms for signal transduction: the coupling of the meso-scale raft domains to membrane-skeleton-induced compartments and dynamic protein complexes. Semin Cell Dev Biol 23(2):126–144Google Scholar
  95. Lasa-Saracíbar B, Aznar MÁ, Lana H, Aizpún I, Gil AG, Blanco-Prieto MJ (2014) Lipid nanoparticles protect from edelfosine toxicity in vivo. Int J Pharm 474:1–5Google Scholar
  96. Lauber K, Bohn E, Kröber SM, Xiao Y, Blumenthal SG, Lindemann RK et al (2003) Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal. Cell 113(6):717–730Google Scholar
  97. Lee AG, Birdsall NJM, Metcalfe JC, Toon PA, Warren GB (1974) Clusters in lipid bilayers and the interpretation of thermal effects in biological membranes. Biochemistry 13:3699–3705Google Scholar
  98. Li YC, Park MJ, Ye S-K, Kim C-W, Kim Y-N (2006) Elevated levels of cholesterol-rich lipid rafts in cancer cells are correlated with apoptosis sensitivity induced by cholesterol-depleting agents. Am J Pathol 168(4):1107–1118Google Scholar
  99. Lingwood D, Simons K (2010) Lipid rafts as a membrane-organizing principle. Science 327:46–50Google Scholar
  100. Lu X, Arthur G (1992) Perturbations of cellular acylation processes by the synthetic alkyl-lysophospholipid 1-O-octadecyl-2-O-methylglycero-3-phosphocholine do not correlate with inhibition of proliferation of MCF7 and T84 cell lines. Cancer Res 52(10):2806–2812Google Scholar
  101. Lu SM, Fairn GD (2018) Mesoscale organization of domains in the plasma membrane – beyond the lipid raft. Crit Rev Biochem Mol Biol 53(2):192–207Google Scholar
  102. Marsh R d W et al (2007) A phase II trial of perifosine in locally advanced, unresectable, or metastatic pancreatic adenocarcinoma. Am J Clin Oncol 30:26–31Google Scholar
  103. Maurer N, Prenner E, Paltauf F, Glatter O (1994) Phase behavior of the antineoplastic ether lipid 1-O-octadecyl-2-O-methyl-glycero-3-phosphocholine. Biochim Biophys Acta 1192:167–176Google Scholar
  104. McConnell HM, De Koker R (1996) Equilibrium thermodynamics of lipid monolayer domains. Langmuir 12:4897–4904Google Scholar
  105. Modolell M, Andreesen R, Pahlke W, Brugger U, Munder PG (1979) Disturbance of phospholipid metabolism during the selective destruction of tumor cells induced by alkyl-lysophospholipids. Cancer Res 39:4681–4686Google Scholar
  106. Mollinedo F, Fernández-Luna JL, Gajate C, Martín-Martín B, Benito A, Martínez-Dalmau R, Modolell M (1997) Selective induction of apoptosis in cancer cells by the ether lipid ET-18-OCH3 (edelfosine): molecular structure requirements, cellular uptake, and protection by Bcl-2 and Bcl-X(L). Cancer Res 57(7):1320–1328Google Scholar
  107. Mollinedo F, Gajate C, Martín-Santamaría S, Gago F (2004) ET-18-OCH3 (edelfosine): a selective antitumour lipid targeting apoptosis through intracellular activation of Fas/CD95 death receptor. Curr Med Chem 11(24):3163–3184Google Scholar
  108. Mueller RB, Sheriff A, Gaipl US, Wesselborg S, Lauber K (2007) Attraction of phagocytes by apoptotic cells is mediated by lysophosphatidylcholine. Autoimmunity 40(4):342–344Google Scholar
  109. Munder PG, Modolell M (1973) Adjuvant induced formation of lysophosphatides and their role in the immune response. Int Arch Allergy Appl Immunol 45(1):133–135Google Scholar
  110. Munder PG, Ferber E, Modolell M, Fischer H (1969) The influence of various adjuvants on the metabolism of phospholipids in macrophages. Int Arch Allergy Appl Immunol 36(1):117–128Google Scholar
  111. Munder PG, Modolell M, Andreesen R, Weltzien HU, Westphal O (1979) Lysophosphatidylcholine (lysolecithin) and its synthetic analogues. Immunemodulating and other biologic effects. Springer Semin Immunopathol 2(2):187–203Google Scholar
  112. Muñoz-Martínez F, Torres C, Castanys S, Gamarro F (2008) The anti-tumor alkylphospholipid perifosine is internalized by an ATP-dependent translocase activity across the plasma membrane of human KB carcinoma cells. Biochim Biophys Acta 1778(2):530–540Google Scholar
  113. Muñoz-Martínez F, Torres C, Castanys S, Gamarro F (2010) CDC50A plays a key role in the uptake of the anticancer drug perifosine in human carcinoma cells. Biochem Pharmacol 80(6):793–800Google Scholar
  114. Munro S (2003) Lipid rafts: elusive or illusive? Cell 115:377–388Google Scholar
  115. Mushayakarara EC, Mantsch HH (1985) Thermotropic phase behavior of the platelet-activating factor: an infrared spectroscopic study. Can J Biochem Cell Biol 63:1071–1076Google Scholar
  116. Na H-K, Surh Y-J (2008) The antitumor ether lipid edelfosine (ET-18-O-CH3) induces apoptosis in H-ras transformed human breast epithelial cells: by blocking ERK1/2 and p38 mitogen-activated protein kinases as potential targets. Asia Pac J Clin Nutr 17(Suppl 1):204–207Google Scholar
  117. Nagler A, Ben-Yehuda D, Badros A, Hari P, Hajek R, Spicka I et al (2013) Randomized placebo-controlled phase III study of perifosine combined with bortezomib and dexamethasone in relapsed, refractory multiple myeloma patients previously treated with bortezomib. Blood 122(21):3189Google Scholar
  118. Nandi N, Vollhardt D, Brezesinski G (2004) Chiral discrimination effects in Langmuir monolayers of 1-O-hexadecyl glycerol. J Phys Chem B 108:327–335Google Scholar
  119. Nieto-Miguel T, Gajate C, Mollinedo F (2006) Differential targets and subcellular localization of antitumor alkyl-lysophospholipid in leukemic Versus solid tumor cells. J Biol Chem 281(21):14833–14840Google Scholar
  120. Pike LJ (2003) Lipid rafts: bringing order to chaos. J Lipid Res 44(4):655–667Google Scholar
  121. Pike LJ (2009) The challenge of lipid rafts. J Lipid Res 50:S323–S328Google Scholar
  122. Porstmann T, Griffiths B, Chung Y-L, Delpuech O, Griffiths JR, Downward J, Schulze A (2005) PKB/Akt induces transcription of enzymes involved in cholesterol and fatty acid biosynthesis via activation of SREBP. Oncogene 24(43):6465–6481Google Scholar
  123. Powis G, Seewald MJ, Gratas C, Melder D, Riebow J, Modest EJ (1992) Selective inhibition of phosphatidylinositol phospholipase C by cytotoxic ether lipid analogues. Cancer Res 52(10):2835–2840Google Scholar
  124. Prenner E, Honsek G, Hönig D, Möbius D, Lohner K (2007) Imaging of the domain organization in sphingomyelin and phosphatidylcholine monolayers. Chem Phys Lipids 145:106–118Google Scholar
  125. Prescott SM, Zimmerman GA, McIntyre TM (1990) Platelet-activating factor. J Biol Chem 265(29):17381–17384Google Scholar
  126. Quinn PJ (2010) A lipid matrix model of membrane raft structure. Prog Lipid Res 49:390–406Google Scholar
  127. Rahman M et al (2011) Phase IV trial of miltefosine in adults and children for treatment of visceral leishmaniasis (kala-azar) in Bangladesh. Am J Trop Med Hyg 85:66–69Google Scholar
  128. Rakotomanga M, Loiseau PM, Saint-Pierre-Chazalet M (2004) Hexadecylphosphocholine interaction with lipid monolayers. Biochim Biophys Acta 1661:212–218Google Scholar
  129. Rey Gomez-Serranillos I, Minones J, Dynarowicz-Latka P, Minones J, Iribarnegaray E (2004) Miltefosine-cholesterol interactions: a monolayer study. Langmuir 20:928–933Google Scholar
  130. Rietveld A, Simons K (1998) The differential miscibility of lipids as the basis for the formation of functional membrane rafts. Biochim Biophys Acta 1376:467–479Google Scholar
  131. Ruiter GA, Zerp SF, Bartelink H, van Blitterswijk WJ, Verheij M (2003) Anti-cancer alkyl-lysophospholipids inhibit the phosphatidylinositol 3-kinase-Akt/PKB survival pathway. Anti-Cancer Drugs 14(2):167–173Google Scholar
  132. Salari H, Dryden P, Davenport R, Howard S, Jones K, Bittman R (1992) Inhibition of protein kinase C by ether-linked lipids is not correlated with their antineoplastic activity on WEHI-3B and R6X-B15 cells. Biochim Biophys Acta 1134(1):81–88Google Scholar
  133. Samadder P, Richards C, Bittman R, Bhullar RP, Arthur G (2003) The antitumor ether lipid 1-Q-octadecyl-2-O-methyl-rac-glycerophosphocholine (ET-18-OCH3) inhibits the association between Ras and Raf-1. Anticancer Res 23(3B):2291–2295Google Scholar
  134. Scheidt HA, Muller P, Herrmann A, Huster D (2003) The potential of fluorescent and spin-labeled steroid analogs to mimic natural cholesterol. J Biol Chem 278(46):45563–45569Google Scholar
  135. Scholar EM (1986) Inhibition of the growth of human lung cancer cells by alkyl-lysophospholipid analogs. Cancer Lett 33(2):199–204Google Scholar
  136. Schroeder R, London E, Brown D (1994) Interactions between saturated acyl chains confer detergent resistance on lipids and glycosylphosphatidylinositol (GPI)-anchored proteins: GPI-anchored proteins in liposomes and cells show similar behavior. Proc Natl Acad Sci 91:12130–12134Google Scholar
  137. Schroeder F, Gallegos AM, Atshaves BP, Storey SM, McIntosh AL, Petrescu AD et al (2001) Recent advances in membrane microdomains: rafts, caveolae, and intracellular cholesterol trafficking. Exp Biol Med 226:873–890Google Scholar
  138. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572Google Scholar
  139. Simons K, Sampaio JL (2011) Membrane organization and lipid rafts. Cold Spring Harb Perspect Biol 3(10):a004697Google Scholar
  140. Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39Google Scholar
  141. Simons K, Van Meer G (1988) Lipid sorting in epithelial cells. Biochemistry 27:6197–6202Google Scholar
  142. Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731Google Scholar
  143. Smets LA, Van Rooij H, Salomons GS (1999) Signalling steps in apoptosis by ether lipids. Apoptosis 4(6):419–427Google Scholar
  144. Smorenburg CH, Seynaeve C, Bontenbal M, Planting AS, Sindermann H, Verweij J (2000) Phase II study of miltefosine 6% solution as topical treatment of skin metastases in breast cancer patients. Anti-Cancer Drugs 11(10):825–828Google Scholar
  145. Snyder F (1995) Platelet-activating factor: the biosynthetic and catabolic enzymes. Biochem J 305(Pt 3):689–705Google Scholar
  146. Soodsma JF, Piantadosi C, Snyder F (1970) The biocleavage of alkyl glyceryl ethers in Morris hepatomas and other transplantable neoplasms. Cancer Res 30(2):309–311Google Scholar
  147. Sundar S, Olliaro PL (2007) Miltefosine in the treatment of leishmaniasis: clinical evidence for informed clinical risk management. Ther Clin Risk Manag 3(5):733–740Google Scholar
  148. Sundar S et al (1999) Oral treatment of visceral leishmaniasis with miltefosine. Ann Trop Med Parasitol 93:589–597Google Scholar
  149. Sundar S et al (2000) Short-course of oral miltefosine for treatment of visceral leishmaniasis. Clin Infect Dis 31:1110–1113Google Scholar
  150. Tarnowski GS, Mountain IM, Stock CC, Munder PG, Weltzien HU, Westphal O (1978) Effect of lysolecithin and analogs on mouse ascites tumors. Cancer Res 38(2):339–344Google Scholar
  151. Terwogt JMM, Mandjes IAM, Sindermann H, Beijnen JH, ten Bokkel Huinink WW (1999) Phase II trial of topically applied miltefosine solution in patients with skin-metastasized breast cancer. Br J Cancer 79(7–8):1158–1161Google Scholar
  152. Thome CH, dos Santos GA, Ferreira GA, Scheucher PS, Izumi C, Leopoldino AM et al (2012) Linker for activation of T-cell family member2 (LAT2) a lipid raft adaptor protein for AKT signaling, is an early mediator of alkylphospholipid anti-leukemic activity. Mol Cell Proteomics 11:1898–1912Google Scholar
  153. Thompson TE, Tillack TW (1985) Organization of glycosphingolipids in bilayers and plasma membranes of mammalian cells. Annu Rev Biophys Biophys Chem 14:361–386Google Scholar
  154. Tidwell T, Guzman G, Vogler WR (1981) The effects of alkyl-lysophospholipids on leukemic cell lines. I. Differential action on two human leukemic cell lines, HL60 and K562. Blood 57(4):794–797Google Scholar
  155. Torrecillas A, Aroca-Aguilar JD, Aranda FJ, Gajate C, Mollinedo F, Corbalán-García S et al (2006) Effects of the anti-neoplastic agent ET-18-OCH3 and some analogs on the biophysical properties of model membranes. Int J Pharm 318:28–40Google Scholar
  156. Uberall F, Oberhuber H, Maly K, Zaknun J, Demuth L, Grunicke HH (1991) Hexadecylphosphocholine inhibits inositol phosphate formation and protein kinase C activity. Cancer Res 51(3):807–812Google Scholar
  157. Unger C, Eibl H, Kim DJ, Fleer EA, Kötting J, Bartsch HH et al (1987) Sensitivity of leukemia cell lines to cytotoxic alkyl-lysophospholipids in relation to O-alkyl cleavage enzyme activities. J Natl Cancer Inst 78(2):219–222Google Scholar
  158. Unger C, Peukert M, Sindermann H, Hilgard P, Nagel G, Eibl H (1990) Hexadecylphosphocholine in the topical treatment of skin metastases in breast cancer patients. Cancer Treat Rev 17(2–3):243–246Google Scholar
  159. Valentino L, Moss T, Olson E, Wang H-J, Elashoff R, Ladisch S (1990) Shed tumor gangliosides and progression of human neuroblastoma. Blood 75:1564–1567Google Scholar
  160. van Blitterswijk WJ, Verheij M (2008) Anticancer alkylphospholipids: mechanisms of action, cellular sensitivity and resistance, and clinical prospects. Curr Pharm Des 14:2061–2074Google Scholar
  161. van der Luit AH, Budde M, Ruurs P, Verheij M, van Blitterswijk WJ (2002) Alkyl-lysophospholipid accumulates in lipid rafts and induces apoptosis via raft-dependent endocytosis and inhibition of phosphatidylcholine synthesis. J Biol Chem 277(42):39541–39547Google Scholar
  162. Van Der Luit AH, Budde M, Verheij M, Van Blitterswijk WJ (2003) Different modes of internalization of apoptotic alkyl-lysophospholipid and cell-rescuing lysophosphatidylcholine. Biochem J 374(Pt 3):747–753Google Scholar
  163. van der Luit AH, Vink SR, Klarenbeek JB, Perrissoud D, Solary E, Verheij M, van Blitterswijk WJ (2007) A new class of anticancer alkylphospholipids uses lipid rafts as membrane gateways to induce apoptosis in lymphoma cells. Mol Cancer Ther 6(8):2337–2345Google Scholar
  164. Verweij J, Planting A, van der Burg M, Stoter G (1992) A dose-finding study of miltefosine (hexadecylphosphocholine) in patients with metastatic solid tumours. J Cancer Res Clin Oncol 118(8):606–608Google Scholar
  165. Vink SR, van Blitterswijk WJ, Schellens JHM, Verheij M (2007a) Rationale and clinical application of alkylphospholipid analogues in combination with radiotherapy. Cancer Treat Rev 33(2):191–202Google Scholar
  166. Vink SR, van der Luit AH, Klarenbeek JB, Verheij M, van Blitterswijk WJ (2007b) Lipid rafts and metabolic energy differentially determine uptake of anti-cancer alkylphospholipids in lymphoma versus carcinoma cells. Biochem Pharmacol 74(10):1456–1465Google Scholar
  167. Vogler WR, Berdel WE (1993) Autologous bone marrow transplantation with alkyl-lysophospholipid-purged marrow. J Hematother 2(1):93–102Google Scholar
  168. Vogler WR, Olson AC, Okamoto S, Somberg LB, Glasser L (1987) Experimental studies on the role of alkyl lysophospholipids in autologous bone marrow transplantation. Lipids 22(11):919–924Google Scholar
  169. Vogler W, Berdel W, Olson A, Winton E, Heffner L, Gordon D (1992) Autologous bone marrow transplantation in acute leukemia with marrow purged with alkyl-lysophospholipid. Blood 80(6):1423Google Scholar
  170. Wang Y, Sweitzer TD, Weinhold PA, Kent C (1993) Nuclear localization of soluble CTP:phosphocholine cytidylyltransferase. J Biol Chem 268(8):5899–5904Google Scholar
  171. Watkins JD, Kent C (1991) Regulation of CTP:phosphocholine cytidylyltransferase activity and subcellular location by phosphorylation in Chinese hamster ovary cells. The effect of phospholipase C treatment. J Biol Chem 266(31):21113–21117Google Scholar
  172. Wong R, Fabian L, Forer A, Brill JA (2007) Phospholipase C and myosin light chain kinase inhibition define a common step in actin regulation during cytokinesis. BMC Cell Biol 8(1):15Google Scholar
  173. Wright MM, Howe AG, Zaremberg V (2004) Cell membranes and apoptosis: role of cardiolipin, phosphatidylcholine, and anticancer lipid analogues. Biochem Cell Biol 82:18–26Google Scholar
  174. Wu WG, Huang CH, Conley TG, Martin RB, Levin IW (1982) Lamellar-micellar transition of 1-stearoyllysophosphatidylcholine assemblies in excess water. Biochemistry 21:5957–5961Google Scholar
  175. Wunderlich F, Ronai A, Speth V, Seelig J, Blume A (1975) Thermotropic lipid clustering in tetrahymena membranes. Biochemistry 14:3730–3735Google Scholar
  176. Wunderlich F, Kreutz W, Mahler P, Ronai A, Heppeler G (1978) Thermotropic fluid→ordered “discontinuous” phase separation in microsomal lipids of tetrahymena. An X-ray diffraction study. Biochemistry 17:2005–2010Google Scholar
  177. Zaremberg V, Gajate C, Cacharro LM, Mollinedo F, McMaster CR (2005) Cytotoxicity of an anti-cancer lysophospholipid through selective modification of lipid raft composition. J Biol Chem 280(45):38047–38058Google Scholar
  178. Zhou X, Lu X, Richard C, Xiong W, Litchfield DW, Bittman R, Arthur G (1996) 1-O-octadecyl-2-O-methyl-glycerophosphocholine inhibits the transduction of growth signals via the MAPK cascade in cultured MCF-7 cells. J Clin Investig 98(4):937–944Google Scholar
  179. Zhuang L, Kim J, Adam RM, Solomon KR, Freeman MR (2005) Cholesterol targeting alters lipid raft composition and cell survival in prostate cancer cells and xenografts. J Clin Investig 115(4):959–968Google Scholar
  180. Zoeller RA, Layne MD, Modest EJ (1995) Animal cell mutants unable to take up biologically active glycerophospholipids. J Lipid Res 36(9):1866–1875Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Vanina Zaremberg
    • 1
    Email author
  • Suriakarthiga Ganesan
    • 1
  • Mark Mahadeo
    • 1
  1. 1.University of CalgaryCalgaryCanada

Personalised recommendations