Advertisement

pp 1-19 | Cite as

Functions of Nuclear Polyphosphoinositides

  • Manuel Olazabal-Morán
  • Ana González-García
  • Ana C. CarreraEmail author
Chapter
Part of the Handbook of Experimental Pharmacology book series

Abstract

Despite interest in phosphoinositide (PtdIns) kinases, such as PtdIns 3 kinases (PI3K), as targets for controlling plasma membrane PtdIns levels in disease, the PtdIns have another less well-known site of action in the cell nucleus.

Recent studies show that PtdIns use a variety of strategies to alter DNA responses. Here, we provide an overview of these newly identified forms of gene expression control, which should be considered when studying the therapeutic use of PtdIns-directed compounds. As PI3K is one of the most important clinical targets in recent years, we will focus on two polyphosphoinositides, the PI3K substrate PtdIns(4,5)di-phosphate (PI4,5P2) and its product PtdIns(3,4,5)tri-phosphate (PI3,4,5P3).

Keywords

Chromatin remodeling Gene expression Lipid transport proteins Nuclear lipids Nuclear phosphoinositide Phosphoinositide transport proteins PI3,4,5P3 PI3K PI4,5P2 

References

  1. Ahn JY, Liu X, Cheng D et al (2005) Nucleophosmin/B23, a nuclear PI (3,4,5)P3 receptor, mediates the antiapoptotic actions of NGF by inhibiting CAD. Mol Cell 18:435–445Google Scholar
  2. Alva V, Lupas AN (2016) The TULIP superfamily of eukaryotic lipid-binding proteins as a mediator of lipid sensing and transport. Biochem Biophys Acta 1861:913–923Google Scholar
  3. Alvarez B, Martínez-A C, Burgering B et al (2001) Forkhead transcription factors contribute to the execution of the mitotic program in mammals. Nature 413:744–747Google Scholar
  4. Angulo I, Vadas O, Garçon F et al (2013) Phosphoinositide 3-kinase δ gene mutation predisposes to respiratory infection and airway damage. Science 342:866–871Google Scholar
  5. Attree O, Olivos IM, Okabe I et al (1992) The Lowe’s oculocerebrorenal syndrome gene encodes a protein highly homologous to inositol polyphosphate-5-phosphatase. Nature 358:239–242Google Scholar
  6. Balla T (2005) Inositol-lipid binding motifs: signal integrators through protein-lipid and protein-protein interactions. J Cell Sci 118:2093–2104Google Scholar
  7. Bidlingmaier S, Liu B (2007) Interrogating yeast surface-displayed human proteome to identify small molecule-binding proteins. Mol Cell Proteomics 11:2012–2020Google Scholar
  8. Blind RD, Suzawa M, Ingraham HA (2012) Direct modification and activation of a nuclear receptor-PIP2 complex by the inositol lipid kinase IPMK. Sci Signal 5:ra44Google Scholar
  9. Blind RD, Sablin EP, Kuchenbecker KM et al (2014) The signaling phospholipid PIP3 creates a new interaction surface on the nuclear receptor SF-1. Proc Natl Acad Sci U S A 111:15054–15059Google Scholar
  10. Bolino A, Muglia M, Conforti FL et al (2000) Charcot-Marie-Tooth type 4B is caused by mutations in the gene encoding myotubularin-related protein-2. Nat Genet 25:17–19Google Scholar
  11. Boronenkov IV, Loijens JC, Umeda M et al (1998) Phosphoinositide signaling pathways in nuclei are associated with nuclear speckles containing pre-mRNA processing factors. Mol Biol Cell 9:3547–3560Google Scholar
  12. Carpentier S, N’Kuli F, Grieco G et al (2013) Class III phosphoinositide 3-kinase/VPS34 and dynamin are critical for apical endocytic recycling. Traffic 14:933–948Google Scholar
  13. Catimel B, Yin MX, Schieber C et al (2009) PI(3,4,5)P3 interactome. J Proteome Res 8:3712–3726Google Scholar
  14. Chen ZH, Zhu M, Yang J et al (2014) PTEN interacts with histone H1 and controls chromatin condensation. Cell Rep 8:2003–2014Google Scholar
  15. Chiu YH, Lee JY, Cantley LC (2014) BRD7, a tumor suppressor, interacts with p85α and regulates PI3K activity. Mol Cell 54:193–202Google Scholar
  16. Cocco L, Martelli AM, Gilmour RS et al (1988) Rapid changes in phospholipid metabolism in the nuclei of Swiss 3T3 cells induced by treatment of the cells with insulin-like growth factor I. Biochem Biophys Res Commun 154:1266–1272Google Scholar
  17. D’Angelo G, Vicinanza M, De Matteis MA (2008) Lipid-transfer proteins in biosynthetic pathways. Curr Opin Cell Biol 20:360–370Google Scholar
  18. Devereaux K, Dall’Armi C, Alcazar-Roman A et al (2013) Regulation of mammalian autophagy by class II and III PI 3-kinases through PI3P synthesis. PLoS One 8:e76405Google Scholar
  19. Di Paolo G, De Camilli P (2006) Phosphoinositides in cell regulation and membrane dynamics. Nature 443:651–657Google Scholar
  20. Dornan GL, Siempelkamp BD, Jenkins ML et al (2017) Conformational disruption of PI3Kδ regulation by immunodeficiency mutations in PIK3CD and PIK3R1. Proc Natl Acad Sci U S A 118:1982–1987Google Scholar
  21. Endo A, Kitamura N, Komada M (2009) Nucleophosmin/B23 regulates ubiquitin dynamics in nucleoli by recruiting deubiquitylating enzyme USP36. J Biol Chem 284:27918–27923Google Scholar
  22. Falasca M, Maffucci T (2012) Regulation and cellular functions of class II phosphoinositide 3-kinases. Biochem J 443:587–601Google Scholar
  23. Fayngerts SA, Wu J, Oxley CL et al (2014) TIPE3 is the transfer protein of lipid second messengers that promote cancer. Cancer Cell 26:465–478Google Scholar
  24. Fruman DA, Chiu H, Hopkins BD et al (2017) The PI3K pathway in human disease. Cell 170:605–635Google Scholar
  25. Funderburk SF, Wang QJ, Yue Z (2010) The Beclin 1-VPS34 complex--at the crossroads of autophagy and beyond. Trends Cell Biol 20:355–362Google Scholar
  26. Gallego O, Betts MJ, Gvozdenovic-Jeremic J et al (2010) A systematic screen for protein-lipid interactions in Saccharomyces cerevisiae. Mol Syst Biol 6:430Google Scholar
  27. García Z, Kumar A, Marqués M et al (2006) PI3K controls early and late events in mammalian cell division. EMBO J 25:655–661Google Scholar
  28. Gelato KA, Tauber M, Ong MS et al (2014) Accessibility of different histone H3-binding domains of UHRF1 is allosterically regulated by phosphatidylinositol 5-phosphate. Mol Cell 54:905–919Google Scholar
  29. Goldsmith JR, Chen YH (2017) Regulation of inflammation and tumorigenesis by the TIPE family of phospholipid transfer proteins. Cell Mol Immunol 14:482–487Google Scholar
  30. Grisendi S, Mecucci C, Falini B et al (2006) Nucleophosmin and cancer. Nat Rev Cancer 6:493–505Google Scholar
  31. Hamann BL, Blind RD (2018) Nuclear phosphoinositide regulation of chromatin. J Cell Physiol 233:107–123Google Scholar
  32. Hempel WM, Cavanaugh AH, Hannan RD et al (1996) The species-specific RNA polymerase I transcription factor SL-1 binds to upstream binding factor. Mol Cell Biol 16:557–563Google Scholar
  33. Jones DR, Bultsma Y, Keune WJ et al (2006) Nuclear PtdIns5P as a transducer of stress signaling: an in vivo role for PIP4Kbeta. Mol Cell 23:685–695Google Scholar
  34. Jungmichel S, Sylvestersen KB, Choudhary C et al (2014) Specificity and commonality of the phosphoinositide-binding proteome analyzed by quantitative mass spectrometry. Cell Rep 6:578–591Google Scholar
  35. Kandoth C, McLellan MD, Vandin F et al (2013) Mutational landscape and significance across 12 major cancer types. Nature 502:333–339Google Scholar
  36. Kim SJ (1998) Insulin rapidly induces nuclear translocation of PI3-kinase in HepG2 cells. Biochem Mol Biol Int 46:187–196Google Scholar
  37. Krylova IN, Sablin EP, Moore J et al (2005) Structural analyses reveal phosphatidyl inositols as ligands for the NR5 orphan receptors SF-1 and LRH-1. Cell 120:343–355Google Scholar
  38. Kumar A, Fernadez-Capetillo O, Carrera AC (2010) Nuclear phosphoinositide 3-kinase beta controls double-strand break DNA repair. Proc Natl Acad Sci U S A 107:7491–7496Google Scholar
  39. Kumar A, Redondo-Muñoz J, Perez-García V et al (2011) Nuclear but not cytosolic phosphoinositide 3-kinase beta plays an essential function in cell survival. Mol Cell Biol 31:2122–2133Google Scholar
  40. Kurek KC, Luks VL, Ayturk UM et al (2012) Somatic mosaic activating mutations in PIK3CA cause CLOVES syndrome. Am J Hum Genet 90:1108–1115Google Scholar
  41. Laporte J, Hu LJ, Kretz C et al (1996) A gene mutated in X-linked myotubular myopathy defines a new putative tyrosine phosphatase family conserved in yeast. Nat Genet 13:175–182Google Scholar
  42. Lees JA, Messa M, Sun EW et al (2017) Lipid transport by TMEM24 at ER-plasma membrane contacts regulates pulsatile insulin secretion. Science 355(6326):eaah6171Google Scholar
  43. Lete MG, Sot J, Ahyayauch H et al (2014) Histones and DNA compete for binding polyphosphoinositides in bilayers. Biophys J 106:1092–1100Google Scholar
  44. Lindmo K, Stenmark H (2006) Regulation of membrane traffic by phosphoinositide 3-kinases. J Cell Sci 119:605–614Google Scholar
  45. Lindsay Y, McCoull D, Davidson L et al (2006) Localization of agonist-sensitive PtdIns(3,4,5)P3 reveals a nuclear pool that is insensitive to PTEN expression. J Cell Sci 119:5160–5168Google Scholar
  46. Liu P, Cheng H, Roberts TM et al (2009) Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov 8:627–644Google Scholar
  47. Lu PJ, Hsu AL, Wang DS et al (1998) Phosphoinositide 3-kinase in rat liver nuclei. Biochemistry 37:5738–5745Google Scholar
  48. Maraldi NM, Capitani S, Caramelli E et al (1984) Conformational changes of nuclear chromatin related to phospholipid induced modifications of the template availability. Adv Enzym Regul 22:447–464Google Scholar
  49. Marqués M, Kumar A, Poveda AM et al (2009) Specific function of phosphoinositide 3-kinase beta in the control of DNA replication. Proc Natl Acad Sci U S A 106:7525–7530Google Scholar
  50. Martelli AM, Manzoli L, Cocco L (2004) Nuclear inositides: facts and perspectives. Pharmacol Ther 101:47–64Google Scholar
  51. Martincorena I, Campbell PJ (2015) Somatic mutation in cancer and normal cells. Science 349:1483–1489Google Scholar
  52. Mellman DL, Gonzales ML, Song C et al (2008) A PtdIns4,5P2-regulated nuclear poly(A) polymerase controls expression of select mRNAs. Nature 451:1013–1017Google Scholar
  53. Monserrate JP, York JD (2010) Inositol phosphate synthesis and the nuclear processes they affect. Curr Opin Cell Biol 22:365–373Google Scholar
  54. Neri LM, Martelli AM, Borgatti P et al (1999) Increase in nuclear phosphatidylinositol 3-kinase activity and phosphatidylinositol (3,4,5) trisphosphate synthesis precede PKC-f translocation to the nucleus of NGF-treated PC12 cells. FASEB J 13:2299–2310Google Scholar
  55. Nicot AS, Laporte J (2008) Endosomal phosphoinositides and human diseases. Traffic 9:1240–1249Google Scholar
  56. Nile AH, Bankaitis VA, Grabon A (2010) Mammalian diseases of phosphatidylinositol transfer proteins and their homologs. Clin Lipidol 5:867–897Google Scholar
  57. Okada M, Jang SW, Ye K (2008) Akt phosphorylation and nuclear phosphoinositide association mediate mRNA export and cell proliferation activities by ALY. Proc Natl Acad Sci U S A 105:8649–8654Google Scholar
  58. Pang J, Yang YW, Huang Y et al (2017) p110β inhibition reduces histone H3K4 Di-methylation in prostate cancer. Prostate 77:299–308Google Scholar
  59. Poli A, Billi AM, Mongiorgi S et al (2016) Nuclear phosphatidylinositol signaling: focus on phosphatidylinositol phosphate kinases and phospholipases C. J Cell Physiol 231:1645–1655Google Scholar
  60. Quaresma AJ, Sievert R, Nickerson JA (2013) Regulation of mRNA export by the PI3 kinase/AKT signal transduction pathway. Mol Biol Cell 24:1208–1221Google Scholar
  61. Rando OJ, Zhao K, Janmey P et al (2002) Phosphatidylinositol-dependent actin filament binding by the SWI/SNF-like BAF chromatin remodeling complex. Proc Natl Acad Sci U S A 99:2824–2829Google Scholar
  62. Redondo-Muñoz J, Pérez-García V, Carrera AC (2014) Phosphoinositide 3-kinase beta: when a kinase is more than a kinase. Trends Cell Mol Biol 8:83–92Google Scholar
  63. Redondo-Muñoz J, Pérez-García V, Rodríguez MJ et al (2015) Phosphoinositide 3-kinase beta protects nuclear envelope integrity by controlling RCC1 localization and ran activity. Mol Cell Biol 35:249–263Google Scholar
  64. Resnick AC, Snowman AM, Kang B et al (2005) Inositol polyphosphate multikinase is a nuclear PI3-kinase with transcriptional regulatory activity. Proc Natl Acad Sci U S A 102:12783–12788Google Scholar
  65. Rowland MM, Bostic HE, Gong D et al (2011) Phosphatidylinositol 3,4,5-trisphosphate activity probes for the labeling and proteomic characterization of protein binding partners. Biochemistry 50:11143–11161Google Scholar
  66. Sablin EP, Blind RD, Krylova IN et al (2009) Structure of SF-1 bound by different phospholipids: evidence for regulatory ligands. Mol Endocrinol 23:25–34Google Scholar
  67. Shah ZH, Jones DR, Sommer L et al (2013) Nuclear phosphoinositides and their impact on nuclear functions. FEBS J 280:6295–6310Google Scholar
  68. Silió V, Redondo-Muñoz J, Carrera AC (2012) Phosphoinositide 3-kinase beta regulates chromosome segregation in mitosis. Mol Biol Cell 23:4526–4542Google Scholar
  69. Smith KP, Moen PT, Wydner KL et al (1999) Processing of endogenous pre-mRNAs in association with SC-35 domains is gene specific. J Cell Biol 144:617–629Google Scholar
  70. Spangle JM, Dreijerink KM, Groner AC et al (2016) PI3K/AKT signaling regulates H3K4 methylation in breast cancer. Cell Rep 15:2692–2704Google Scholar
  71. Stijf-Bultsma Y, Sommer L, Tauber M et al (2015) The basal transcription complex component TAF3 transduces changes in nuclear phosphoinositides into transcriptional output. Mol Cell 58:453–467Google Scholar
  72. Stopkova P, Saito T, Papolos DF et al (2004) Identification of PIK3C3 promoter variant associated with bipolar disorder and schizophrenia. Biol Psychiatry 55:981–988Google Scholar
  73. Vanhaesebroeck B, Guillermet-Guibert J, Graupera M et al (2010) The emerging mechanisms of isoform-specific PI3K signalling. Nat Rev Mol Cell Biol 11:329–341Google Scholar
  74. Ye K, Hurt KJ, Wu FY et al (2000) Pike. A nuclear gtpase that enhances PI3kinase activity and is regulated by protein 4.1N. Cell 103:919–930Google Scholar
  75. Yildirim S, Castano E, Sobol M et al (2013) Involvement of phosphatidylinositol 4,5-bisphosphate in RNA polymerase I transcription. J Cell Sci 126:2730–2739Google Scholar
  76. Yu H, Fukami K, Watanabe Y et al (1998) Phosphatidylinositol 4,5-bisphosphate reverses the inhibition of RNA transcription caused by histone H1. Eur J Biochem 251:281–287Google Scholar
  77. Zhu H, Bilgin M, Bangham R et al (2001) Global analysis of protein activities using proteome chips. Science 293:2101–2105Google Scholar
  78. Zini N, Ognibene A, Bavelloni A et al (1996) Cytoplasmic and nuclear localization sites of phosphatidylinositol 3-kinase in human osteosarcoma sensitive and multidrug-resistant Saos-2 cells. Histochem Cell Biol 106:457–464Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Manuel Olazabal-Morán
    • 1
  • Ana González-García
    • 1
  • Ana C. Carrera
    • 1
    Email author
  1. 1.Department of Immunology and OncologyCentro Nacional de Biotecnología/CSICMadridSpain

Personalised recommendations