Advertisement

NOP-Targeted Nonpeptide Ligands

  • Nurulain T. ZaveriEmail author
  • Michael E. Meyer
Chapter
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 254)

Abstract

The development of nonpeptide systemically active small-molecule NOP-targeted ligands has contributed tremendously to validating the NOP receptor as a promising target for therapeutics. Although a NOP-targeted compound is not yet approved for clinical use, a few NOP ligands are in clinical trials for various indications. Both successful and failed human clinical trials with NOP ligands provide opportunities for rational development of new and improved NOP-targeted compounds. A few years after the discovery of the NOP receptor in 1994, and its de-orphanization upon discovery of the endogenous peptide nociceptin/orphanin FQ (N/OFQ) in 1995, there was a significant effort in the pharmaceutical industry to discover nonpeptide NOP ligands from hits obtained from high-throughput screening campaigns of compound libraries. Depending on the therapeutic indication to be pursued, NOP agonists and antagonists were discovered, and some were optimized as clinical candidates. Advances such as G protein-coupled receptor (GPCR) structure elucidation, functional selectivity in ligand-driven GPCR activation, and multi-targeted ligands provide new scope for the rational design of novel NOP ligands fine-tuned for successful clinical translation. This article reviews the field of nonpeptide NOP ligand drug design in the context of these exciting developments and highlights new optimized nonpeptide NOP ligands possessing interesting functional profiles, which are particularly attractive for several unmet clinical applications involving NOP receptor pharmacomodulation.

Keywords

Nociceptin ligands NOP agonists NOP antagonists NOP ligands Small-molecule NOP ligands 

References

  1. Adapa ID, Toll L (1997) Relationship between binding affinity and functional activity of nociceptin/orphanin FQ. Neuropeptides 31:403–408PubMedGoogle Scholar
  2. Agostini S, Petrella C (2014) The endogenous nociceptin/orphanin FQ-NOP receptor system as a potential therapeutic target for intestinal disorders. Neurogastroenterol Motil 26:1519–1526PubMedGoogle Scholar
  3. Andero R, Brothers SP, Jovanovic T, Chen YT, Salah-Uddin H, Cameron M, Bannister TD, Almli L, Stevens JS, Bradley B, Binder EB, Wahlestedt C, Ressler KJ (2013) Amygdala-dependent fear is regulated by Oprl1 in mice and humans with PTSD. Sci Transl Med 5:188ra73PubMedPubMedCentralGoogle Scholar
  4. Arcuri L, Novello S, Frassineti M, Mercatelli D, Pisano CA, Morella I, Fasano S, Journigan BV, Meyer ME, Polgar WE, Brambilla R, Zaveri NT, Morari M (2018) Anti-Parkinsonian and anti-dyskinetic profiles of two novel potent and selective nociceptin/orphanin FQ receptor agonists. Br J Pharmacol 175:782–796PubMedPubMedCentralGoogle Scholar
  5. Asth L, Ruzza C, Malfacini D, Medeiros I, Guerrini R, Zaveri NT, Gavioli EC, Calo G (2016) Beta-arrestin 2 rather than G protein efficacy determines the anxiolytic-versus antidepressant-like effects of nociceptin/orphanin FQ receptor ligands. Neuropharmacology 105:434–442PubMedPubMedCentralGoogle Scholar
  6. Battista K, Bignan GC, Connolly PJ, Reitz Allen B, Ross TM, Scott MK, Middleton SA, Orsini MJ (2009) In: USPTO (ed) Hydroxy alkyl substituted 1,3,8-triazaspiro[4,5]decan-4-one derivatives useful for the treatment of ORL-1 receptor mediated disorders. Janssen Pharmaceutica, RaritanGoogle Scholar
  7. Broer BM, Gurrath M, Holtje HD (2003) Molecular modelling studies on the ORL1-receptor and ORL1-agonists. J Comput Aided Mol Des 17:739–754PubMedGoogle Scholar
  8. Cami-Kobeci G, Polgar WE, Khroyan TV, Toll L, Husbands SM (2011) Structural determinants of opioid and NOP receptor activity in derivatives of buprenorphine. J Med Chem 54:6531–6537PubMedPubMedCentralGoogle Scholar
  9. Christoph A, Eerdekens MH, Kok M, Volkers G, Freynhagen R (2017) Cebranopadol, a novel first-in-class analgesic drug candidate: first experience in patients with chronic low back pain in a randomized clinical trial. Pain 158:1813–1824PubMedPubMedCentralGoogle Scholar
  10. Christoph T, Raffa R, De Vry J, Schroder W (2018) Synergistic interaction between the agonism of cebranopadol at nociceptin/orphanin FQ and classical opioid receptors in the rat spinal nerve ligation model. Pharmacol Res Perspect 6:e00444PubMedPubMedCentralGoogle Scholar
  11. Ciccocioppo R, Economidou D, Cippitelli A, Cucculelli M, Ubaldi M, Soverchia L, Lourdusamy A, Massi M (2006) Genetically selected Marchigian Sardinian alcohol-preferring (msP) rats: an animal model to study the neurobiology of alcoholism. Addict Biol 11:339–355PubMedPubMedCentralGoogle Scholar
  12. Ciccocioppo R, Gehlert DR, Ryabinin A, Kaur S, Cippitelli A, Thorsell A, Lí AD, Hipskind PA, Hamdouchi C, Lu J, Hembre EJ, Cramer J, Song M, McKinzie D, Morin M, Economidou D, Stopponi S, Cannella N, Braconi S, Kallupi M, de Guglielmo G, Massi M, George DT, Gilman J, Hersh J, Tauscher JT, Hunt SP, Hommer D, Heilig M (2009) Stress-related neuropeptides and alcoholism: CRH, NPY, and beyond. Alcohol 43:491–498PubMedPubMedCentralGoogle Scholar
  13. Ciccocioppo R, Stopponi S, Economidou D, Kuriyama M, Kinoshita H, Heilig M, Roberto M, Weiss F, Teshima K (2014) Chronic treatment with novel brain-penetrating selective NOP receptor agonist MT-7716 reduces alcohol drinking and seeking in the rat. Neuropsychopharmacology 39:2601–2610PubMedPubMedCentralGoogle Scholar
  14. Cremeans CM, Gruley E, Kyle DJ, Ko MC (2012) Roles of mu-opioid receptors and nociceptin/orphanin FQ peptide receptors in buprenorphine-induced physiological responses in primates. J Pharmacol Exp Ther 343:72–81PubMedPubMedCentralGoogle Scholar
  15. Daga PR, Zaveri NT (2012) Homology modeling and molecular dynamics simulations of the active state of the nociceptin receptor reveal new insights into agonist binding and activation. Proteins 80:1948–1961PubMedPubMedCentralGoogle Scholar
  16. Daga PR, Polgar WE, Zaveri NT (2014) Structure-based virtual screening of the nociceptin receptor: hybrid docking and shape-based approaches for improved hit identification. J Chem Inf Model 54:2732–2743PubMedPubMedCentralGoogle Scholar
  17. Dahan A, Boom M, Sarton E, Hay J, Groeneveld GJ, Neukirchen M, Bothmer J, Aarts L, Olofsen E (2017) Respiratory effects of the nociceptin/orphanin FQ peptide and opioid receptor agonist, cebranopadol, in healthy human volunteers. Anesthesiology 126:697–707Google Scholar
  18. de Guglielmo G, Martin-Fardon R, Teshima K, Ciccocioppo R, Weiss F (2015) MT-7716, a potent NOP receptor agonist, preferentially reduces ethanol seeking and reinforcement in post-dependent rats. Addict Biol 20:643–651Google Scholar
  19. DeWire SM, Yamashita DS, Rominger DH, Liu G, Cowan CL, Graczyk TM, Chen XT, Pitis PM, Gotchev D, Yuan C, Koblish M, Lark MW, Violin JD (2013) A G protein-biased ligand at the mu-opioid receptor is potently analgesic with reduced gastrointestinal and respiratory dysfunction compared with morphine. J Pharmacol Exp Ther 344:708–717PubMedGoogle Scholar
  20. Ding H, Czoty PW, Kiguchi N, Cami-Kobeci G, Sukhtankar DD, Nader MA, Husbands SM, Ko MC (2016) A novel orvinol analog, BU08028, as a safe opioid analgesic without abuse liability in primates. Proc Natl Acad Sci U S A 113:E5511–E5518PubMedPubMedCentralGoogle Scholar
  21. Ding H, Kiguchi N, Yasuda D, Daga PR, Polgar WE, Lu JJ, Czoty PW, Kishioka S, Zaveri NT, Ko MC (2018) A bifunctional nociceptin and mu opioid receptor agonist is analgesic without opioid side effects in nonhuman primates. Sci Transl Med 10:eaar3483Google Scholar
  22. Dunn AD, Reed B, Guariglia C, Dunn AM, Hillman JM, Kreek MJ (2018) Structurally related kappa opioid receptor agonists with substantial differential signaling bias: neuroendocrine and behavioral effects in C57BL6 mice. Int J Neuropsychopharmacol 21:847–857PubMedPubMedCentralGoogle Scholar
  23. Economidou D, Hansson AC, Weiss F, Terasmaa A, Sommer WH, Cippitelli A, Fedeli A, Martin-Fardon R, Massi M, Ciccocioppo R, Heilig M (2008) Dysregulation of nociceptin/orphanin FQ activity in the amygdala is linked to excessive alcohol drinking in the rat. Biol Psychiatry 64:211–218PubMedPubMedCentralGoogle Scholar
  24. Eerdekens MH, Kapanadze S, Koch ED, Kralidis G, Volkers G, Ahmedzai SH, Meissner W (2018) Cancer-related chronic pain: investigation of the novel analgesic drug candidate cebranopadol in a randomized, double-blind, noninferiority trial. Eur J Pain 23(3):577–588Google Scholar
  25. Ferrari F, Cerlesi MC, Malfacini D, Asth L, Gavioli EC, Journigan VB, Kamakolanu UG, Meyer MM, Yasuda D, Polgar WE, Rizzi A, Guerrini R, Ruzza C, Zaveri NT, Calo G (2016) In vitro functional characterization of novel nociceptin/orphanin FQ receptor agonists in recombinant and native preparations. Eur J Pharmacol 793:1–13PubMedPubMedCentralGoogle Scholar
  26. Ferrari F, Malfacini D, Journigan BV, Bird MF, Trapella C, Guerrini R, Lambert DG, Calo G, Zaveri NT (2017) In vitro pharmacological characterization of a novel unbiased NOP receptor-selective nonpeptide agonist AT-403. Pharmacol Res Perspect 5(6).  https://doi.org/10.1002/prp2.333 Google Scholar
  27. Fichna J, Sobczak M, Mokrowiecka A, Cygankiewicz A, Zakrzewski P, Cenac N, Sałaga M, Timmermans JP, Vergnolle N, Małecka-Panas E (2014) Activation of the endogenous nociceptin system by selective nociceptin receptor agonist SCH 221510 produces antitransit and antinociceptive effect: a novel strategy for treatment of diarrhea-predominant IBS. Neurogastroenterol Motil 26:1539–1550PubMedGoogle Scholar
  28. Gavioli EC, Calo G (2006) Antidepressant- and anxiolytic-like effects of nociceptin/orphanin FQ receptor ligands. Naunyn Schmiedebergs Arch Pharmacol 372:319–330PubMedGoogle Scholar
  29. Gavioli EC, Calo G (2013) Nociceptin/orphanin FQ receptor antagonists as innovative antidepressant drugs. Pharmacol Ther 140:10–25PubMedPubMedCentralGoogle Scholar
  30. Gavioli EC, Marzola G, Guerrini R, Bertorelli R, Zucchini S, De Lima TC, Rae GA, Salvadori S, Regoli D, Calo G (2003) Blockade of nociceptin/orphanin FQ-NOP receptor signalling produces antidepressant-like effects: pharmacological and genetic evidences from the mouse forced swimming test. Eur J Neurosci 17:1987–1990PubMedPubMedCentralGoogle Scholar
  31. Gohler K, Sokolowska M, Schoedel KA, Nemeth R, Kleideiter E, Szeto I, Eerdekens MH (2019) Assessment of the abuse potential of cebranopadol in nondependent recreational opioid users: a phase 1 randomized controlled study. J Clin Psychopharmacol 39:46–56Google Scholar
  32. Goto Y, Arai-Otsuki S, Tachibana Y, Ichikawa D, Ozaki S, Takahashi H, Iwasawa Y, Okamoto O, Okuda S, Ohta H, Sagara T (2006) Identification of a novel spiropiperidine opioid receptor-like 1 antagonist class by a focused library approach featuring 3D-pharmacophore similarity. J Med Chem 49:847–849PubMedGoogle Scholar
  33. Hawkinson JE, Acosta-Burruel M, Espitia SA (2000) Opioid activity profiles indicate similarities between the nociceptin/orphanin FQ and opioid receptors. Eur J Pharmacol 389:107–114PubMedGoogle Scholar
  34. Hayashi S, Hirao A, Imai A, Nakamura H, Murata Y, Ohashi K, Nakata E (2009) Novel non-peptide nociceptin/orphanin FQ receptor agonist, 1-[1-(1-Methylcyclooctyl)-4-piperidinyl]-2-[(3R)-3-piperidinyl]-1H-benzimidazole: design, synthesis, and structure-activity relationship of oral receptor occupancy in the brain for orally potent antianxiety drug. J Med Chem 52:610–625PubMedGoogle Scholar
  35. Hayashi S, Nakata E, Morita A, Mizuno K, Yamamura K, Kato A, Ohashi K (2010) Discovery of {1-[4-(2-{hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl}-1H-benzimidazol-1-yl)piperidin-1-yl]cyclooctyl}methanol, systemically potent novel non-peptide agonist of nociceptin/orphanin FQ receptor as analgesic for the treatment of neuropathic pain: design, synthesis, and structure-activity relationships. Bioorg Med Chem 18:7675–7699PubMedGoogle Scholar
  36. Hirao A, Imai A, Sugie Y, Yamada Y, Hayashi S, Toide K (2008) Pharmacological characterization of the newly synthesized nociceptin/orphanin FQ-receptor agonist 1-[1-(1-methylcyclooctyl)-4-piperidinyl]-2-[(3R)-3-piperidinyl]-1H-benzimidazole as an anxiolytic agent. J Pharmacol Sci 106:361–368PubMedPubMedCentralGoogle Scholar
  37. Ho GD, Anthes J, Bercovici A, Caldwell JP, Cheng KC, Cui X, Fawzi A, Fernandez X, Greenlee WJ, Hey J, Korfmacher W, Lu SX, McLeod RL, Ng F, Torhan AS, Tan Z, Tulshian D, Varty GB, Xu X, Zhang H (2009) The discovery of tropane derivatives as nociceptin receptor ligands for the management of cough and anxiety. Bioorg Med Chem Lett 19:2519–2523PubMedPubMedCentralGoogle Scholar
  38. Hu E, Calo G, Guerrini R, Ko MC (2010) Long-lasting antinociceptive spinal effects in primates of the novel nociceptin/orphanin FQ receptor agonist UFP-112. Pain 148:107–113PubMedGoogle Scholar
  39. Jenck F, Moreau JL, Martin JR, Kilpatrick GJ, Reinscheid RK, Monsma FJ Jr, Nothacker HP, Civelli O (1997) Orphanin FQ acts as an anxiolytic to attenuate behavioral responses to stress. Proc Natl Acad Sci U S A 94:14854–14858PubMedPubMedCentralGoogle Scholar
  40. Jenck F, Wichmann J, Dautzenberg FM, Moreau JL, Ouagazzal AM, Martin JR, Lundstrom K, Cesura AM, Poli SM, Roever S, Kolczewski S, Adam G, Kilpatrick G (2000) A synthetic agonist at the orphanin FQ/nociceptin receptor ORL1: anxiolytic profile in the rat. Proc Natl Acad Sci U S A 97:4938–4943PubMedPubMedCentralGoogle Scholar
  41. Journigan VB, Polgar WE, Khroyan TV, Zaveri NT (2014) Designing bifunctional NOP receptor-mu opioid receptor ligands from NOP-receptor selective scaffolds. Part II. Bioorg Med Chem 22:2508–2516PubMedPubMedCentralGoogle Scholar
  42. Journigan VB, Polgar WE, Tuan EW, Lu JJ, Daga PR, Zaveri NT (2017) Probing ligand recognition of the opioid pan antagonist AT-076 at nociceptin, kappa, mu, and delta opioid receptors through structure-activity relationships. Nat Sci Rep 7:13255–13275Google Scholar
  43. Kallupi M, Scuppa G, de Guglielmo G, Calo G, Weiss F, Statnick MA, Rorick-Kehn LM, Ciccocioppo R (2017) Genetic deletion of the nociceptin/orphanin FQ receptor in the rat confers resilience to the development of drug addiction. Neuropsychopharmacology 42:695–706PubMedPubMedCentralGoogle Scholar
  44. Kawamoto H, Ozaki S, Itoh Y, Miyaji M, Arai S, Nakashima H, Kato T, Ohta H, Iwasawa Y (1999) Discovery of the first potent and selective small molecule opioid receptor-like (ORL1) antagonist: 1-[(3R,4R)-1-cyclooctylmethyl-3- hydroxymethyl-4-piperidyl]-3-ethyl-1, 3-dihydro-2H-benzimidazol-2-one (J-113397). J Med Chem 42:5061–5063PubMedGoogle Scholar
  45. Khroyan TV, Zaveri NT, Polgar WE, Orduna J, Olsen C, Jiang F, Toll L (2007) SR 16435 [1-(1-(bicyclo[3.3.1]nonan-9-yl)piperidin-4-yl)indolin-2-one], a novel mixed nociceptin/orphanin FQ/mu-opioid receptor partial agonist: analgesic and rewarding properties in mice. J Pharmacol Exp Ther 320:934–943PubMedPubMedCentralGoogle Scholar
  46. Khroyan TV, Polgar WE, Orduna J, Jiang F, Olsen C, Toll L, Zaveri NT (2009) Activity of new NOP receptor ligands in a rat peripheral mononeuropathy model: potentiation of morphine anti-allodynic activity by NOP receptor antagonists. Eur J Pharmacol 610:49–54PubMedPubMedCentralGoogle Scholar
  47. Khroyan TV, Polgar WE, Cami-Kobeci G, Husbands SM, Zaveri NT, Toll L (2011a) The first universal opioid ligand, (2S)-2-[(5R,6R,7R,14S)-N-cyclopropylmethyl-4,5-epoxy-6,14-ethano-3-hydroxy-6-meth oxymorphinan-7-yl]-3,3-dimethylpentan-2-ol (BU08028): characterization of the in vitro profile and in vivo behavioral effects in mouse models of acute pain and cocaine-induced reward. J Pharmacol Exp Ther 336:952–961PubMedPubMedCentralGoogle Scholar
  48. Khroyan TV, Polgar WE, Orduna J, Montenegro J, Jiang F, Zaveri NT, Toll L (2011b) Differential effects of nociceptin/orphanin FQ (NOP) receptor agonists in acute versus chronic pain: studies with bifunctional NOP/mu receptor agonists in the sciatic nerve ligation chronic pain model in mice. J Pharmacol Exp Ther 339:687–693PubMedPubMedCentralGoogle Scholar
  49. Kingwell K (2015) Pioneering biased ligand offers efficacy with reduced on-target toxicity. Nat Rev Drug Discov 14:809–810PubMedGoogle Scholar
  50. Ko MC, Woods JH, Fantegrossi WE, Galuska CM, Wichmann J, Prinssen EP (2009) Behavioral effects of a synthetic agonist selective for nociceptin/orphanin FQ peptide receptors in monkeys. Neuropsychopharmacology 34:2088–2096PubMedPubMedCentralGoogle Scholar
  51. Kobayashi K, Kato T, Yamamoto I, Shimizu A, Mizutani S, Asai M, Kawamoto H, Ito S, Yoshizumi T, Hirayama M, Ozaki S, Ohta H, Okamoto O (2009a) Optimization of benzimidazole series as opioid receptor-like 1 (ORL1) antagonists: SAR study directed toward improvement of selectivity over hERG activity. Bioorg Med Chem Lett 19:3100–3103PubMedGoogle Scholar
  52. Kobayashi K, Tsujita T, Ito H, Ozaki S, Tani T, Ishii Y, Okuda S, Tadano K, Fukuroda T, Ohta H, Okamoto O (2009b) Identification of MK-1925: a selective, orally active and brain-penetrable opioid receptor-like 1 (ORL1) antagonist. Bioorg Med Chem Lett 19:4729–4732PubMedGoogle Scholar
  53. Kobayashi K, Uchiyama M, Takahashi H, Kawamoto H, Ito S, Yoshizumi T, Nakashima H, Kato T, Shimizu A, Yamamoto I, Asai M, Miyazoe H, Ohno A, Hirayama M, Ozaki S, Tani T, Ishii Y, Tanaka T, Mochidome T, Tadano K, Fukuroda T, Ohta H, Okamoto O (2009c) 2-Cyclohexylcarbonylbenzimidazoles as potent, orally available and brain-penetrable opioid receptor-like 1 (ORL1) antagonists. Bioorg Med Chem Lett 19:3096–3099PubMedGoogle Scholar
  54. Kuzmin A, Sandin J, Terenius L, Ogren SO (2003) Acquisition, expression, and reinstatement of ethanol-induced conditioned place preference in mice: effects of opioid receptor-like 1 receptor agonists and naloxone. J Pharmacol Exp Ther 304:310–318PubMedPubMedCentralGoogle Scholar
  55. Kuzmin A, Kreek MJ, Bakalkin G, Liljequist S (2007) The nociceptin/orphanin FQ receptor agonist Ro 64-6198 reduces alcohol self-administration and prevents relapse-like alcohol drinking. Neuropsychopharmacology 32:902–910PubMedGoogle Scholar
  56. Linz K, Christoph T, Tzschentke TM, Koch T, Schiene K, Gautrois M, Schröder W, Kögel BY, Beier H, Englberger W, Schunk S, De Vry J, Jahnel U, Frosch S (2014) Cebranopadol: a novel potent analgesic nociceptin/orphanin FQ peptide and opioid receptor agonist. J Pharmacol Exp Ther 349:535–548Google Scholar
  57. Litten RZ (2016) Nociceptin receptor as a target to treat alcohol use disorder: challenges in advancing medications development. Alcohol Clin Exp Res 40:2299–2304PubMedGoogle Scholar
  58. Lu SX, Higgins GA, Hodgson RA, Hyde LA, Del Vecchio RA, Guthrie DH, Kazdoba T, McCool MF, Morgan CA, Bercovici A, Ho GD, Tulshian D, Parker EM, Hunter JC, Varty GB (2011) The anxiolytic-like profile of the nociceptin receptor agonist, endo-8-[bis(2-chlorophenyl)methyl]-3-phenyl-8-azabicyclo[3.2.1]octane-3-carboxami de (SCH 655842): comparison of efficacy and side effects across rodent species. Eur J Pharmacol 661:63–71PubMedPubMedCentralGoogle Scholar
  59. Malfacini D, Ambrosio C, Gro MC, Sbraccia M, Trapella C, Guerrini R, Bonora M, Pinton P, Costa T, Calo G (2015) Pharmacological profile of nociceptin/orphanin FQ receptors interacting with G-proteins and beta-arrestins 2. PLoS One 10:e0132865PubMedPubMedCentralGoogle Scholar
  60. Mallimo EM, Kusnecov AW (2013) The role of orphanin FQ/nociceptin in neuroplasticity: relationship to stress, anxiety and neuroinflammation. Front Cell Neurosci 7:173PubMedPubMedCentralGoogle Scholar
  61. Marti M, Mela F, Veronesi C, Guerrini R, Salvadori S, Federici M, Mercuri NB, Rizzi A, Franchi G, Beani L, Bianchi C, Morari M (2004) Blockade of nociceptin/orphanin FQ receptor signaling in rat substantia nigra pars reticulata stimulates nigrostriatal dopaminergic transmission and motor behavior. J Neurosci 24:6659–6666PubMedPubMedCentralGoogle Scholar
  62. Marti M, Mela F, Fantin M, Zucchini S, Brown JM, Witta J, Di Benedetto M, Buzas B, Reinscheid RK, Salvadori S, Guerrini R, Romualdi P, Candeletti S, Simonato M, Cox BM, Morari M (2005) Blockade of nociceptin/orphanin FQ transmission attenuates symptoms and neurodegeneration associated with Parkinson’s disease. J Neurosci 25:9591–9601Google Scholar
  63. Marti M, Trapella C, Viaro R, Morari M (2007) The nociceptin/orphanin FQ receptor antagonist J-113397 and L-DOPA additively attenuate experimental parkinsonism through overinhibition of the nigrothalamic pathway. J Neurosci 27:1297–1307PubMedPubMedCentralGoogle Scholar
  64. Marti M, Trapella C, Morari M (2008) The novel nociceptin/orphanin FQ receptor antagonist Trap-101 alleviates experimental parkinsonism through inhibition of the nigro-thalamic pathway: positive interaction with L-DOPA. J Neurochem 107:1683–1696PubMedPubMedCentralGoogle Scholar
  65. Marti M, Rodi D, Li Q, Guerrini R, Fasano S, Morella I, Tozzi A, Brambilla R, Calabresi P, Simonato M, Bezard E, Morari M (2012) Nociceptin/orphanin FQ receptor agonists attenuate L-DOPA-induced dyskinesias. J Neurosci 32:16106–16119PubMedPubMedCentralGoogle Scholar
  66. Marti M, Mela F, Budri M, Volta M, Malfacini D, Molinari S, Zaveri NT, Ronzoni S, Petrillo P, Calò G, Morari M (2013) Acute and chronic antiparkinsonian effects of the novel nociceptin/orphanin FQ receptor antagonist NiK-21273 in comparison with SB-612111. Br J Pharmacol 168:863–879PubMedPubMedCentralGoogle Scholar
  67. Martin-Fardon R, Zorrilla EP, Ciccocioppo R, Weiss F (2010) Role of innate and drug-induced dysregulation of brain stress and arousal systems in addiction: focus on corticotropin-releasing factor, nociceptin/orphanin FQ, and orexin/hypocretin. Brain Res 1314:145–161PubMedGoogle Scholar
  68. McLeod RL, Jia Y, Fernandez X, Parra LE, Wang X, Tulshian DB, Kiselgof EJ, Tan Z, Fawzi AB, Smith-Torhan A, Zhang H, Hey JA (2004) Antitussive profile of the NOP agonist Ro-64-6198 in the guinea pig. Pharmacology 71:143–149PubMedPubMedCentralGoogle Scholar
  69. McLeod RL, Tulshian DB, Ho GD, Fernandez X, Bolser DC, Parra LE, Zimmer JC, Erickson CH, Fawzi AB, Jayappa H, Lehr C, Erskine J, Smith-Torhan A, Zhang H, Hey JA (2009) Effect of a novel NOP receptor agonist (SCH 225288) on guinea pig irritant-evoked, feline mechanically induced and canine infectious tracheobronchitis cough. Pharmacology 84:153–161PubMedGoogle Scholar
  70. McLeod RL, Tulshian DB, Bolser DC, Varty GB, Baptista M, Fernandez X, Parra LE, Zimmer JC, Erickson CH, Ho GD, Jia Y, Ng FW, Korfmacher W, Xu X, Veals J, Smith-Torhan A, Wainhaus S, Fawzi AB, Austin TM, van Heek M, Hey JA (2010) Pharmacological profile of the NOP agonist and cough suppressing agent SCH 486757 (8-[Bis(2-Chlorophenyl)Methyl]-3-(2-Pyrimidinyl)-8-Azabicyclo[3.2.1]Octan-3-Ol) in preclinical models. Eur J Pharmacol 630:112–120PubMedGoogle Scholar
  71. McLeod RL, Tulshian DB, Sadeh J (2011) Where are the new cough treatments: a debriefing of recent clinical proof-of-concept trials with the NOP agonist SCH 486757. Pharmacology 88:50–54PubMedGoogle Scholar
  72. Meunier J, Mouledous L, Topham CM (2000) The nociceptin (ORL1) receptor: molecular cloning and functional architecture. Peptides 21:893–900PubMedGoogle Scholar
  73. Miller RL, Thompson AA, Trapella C, Guerrini R, Malfacini D, Patel N, Han GW, Cherezov V, Calo G, Katritch V, Stevens RC (2015) The importance of ligand-receptor conformational pairs in stabilization: spotlight on the N/OFQ G protein-coupled receptor. Structure 23:2291–2299PubMedPubMedCentralGoogle Scholar
  74. NCT03608371 (2018) BTRX-246040 study in subjects with Parkinson’s disease with motor fluctuations. Phase 2 clinical trial. https://clinicaltrials.gov/. Accessed 18 Dec 2018
  75. Obara I, Przewlocki R, Przewlocka B (2005) Spinal and local peripheral antiallodynic activity of Ro64-6198 in neuropathic pain in the rat. Pain 116:17–25PubMedGoogle Scholar
  76. Ozaki S, Kawamoto H, Itoh Y, Miyaji M, Azuma T, Ichikawa D, Nambu H, Iguchi T, Iwasawa Y, Ohta H (2000) In vitro and in vivo pharmacological characterization of J-113397, a potent and selective non-peptidyl ORL1 receptor antagonist. Eur J Pharmacol 402:45–53PubMedGoogle Scholar
  77. Podlesnik CA, Ko MC, Winger G, Wichmann J, Prinssen EP, Woods JH (2011) The effects of nociceptin/orphanin FQ receptor agonist Ro 64-6198 and diazepam on antinociception and remifentanil self-administration in rhesus monkeys. Psychopharmacology (Berl) 213:53–60Google Scholar
  78. Post A, Smart TS, Jackson K, Mann J, Mohs R, Rorick-Kehn L, Statnick M, Anton R, O'Malley SS, Wong CJ (2016a) Proof-of-concept study to assess the nociceptin receptor antagonist LY2940094 as a new treatment for alcohol dependence. Alcohol Clin Exp Res 40:1935–1944PubMedGoogle Scholar
  79. Post A, Smart TS, Krikke-Workel J, Dawson GR, Harmer CJ, Browning M, Jackson K, Kakar R, Mohs R, Statnick M, Wafford K, McCarthy A, Barth V, Witkin JM (2016b) A selective nociceptin receptor antagonist to treat depression: evidence from preclinical and clinical studies. Neuropsychopharmacology 41:1803–1812PubMedPubMedCentralGoogle Scholar
  80. Pradhan AA, Perroy J, Walwyn WM, Smith ML, Vicente-Sanchez A, Segura L, Bana A, Kieffer BL, Evans CJ (2016) Agonist-specific recruitment of arrestin isoforms differentially modify delta opioid receptor function. J Neurosci 36:3541–3551PubMedPubMedCentralGoogle Scholar
  81. Reinscheid RK (2006) The orphanin FQ/nociceptin receptor as a novel drug target in psychiatric disorders. CNS Neurol Disord Drug Targets 5:219–224PubMedGoogle Scholar
  82. Rekik K, Faria Da Silva R, Colom M, Pacifico S, Zaveri NT, Calo G, Rampon C, Frances B, Mouledous L (2017) Activation of nociceptin/orphanin FQ receptors inhibits contextual fear memory reconsolidation. Neuropharmacology 125:39–49Google Scholar
  83. Rizzi A, Gavioli EC, Marzola G, Spagnolo B, Zucchini S, Ciccocioppo R, Trapella C, Regoli D, Calo G (2007) Pharmacological characterization of the nociceptin/orphanin FQ receptor antagonist SB-612111 [(−)-cis-1-methyl-7-[[4-(2,6-dichlorophenyl)piperidin-1-yl]methyl]-6,7,8,9-tetrah ydro-5H-benzocyclohepten-5-ol]: in vivo studies. J Pharmacol Exp Ther 321:968–974Google Scholar
  84. Rizzi A, Ruzza C, Bianco S, Trapella C, Calo G (2017) Antinociceptive action of NOP and opioid receptor agonists in the mouse orofacial formalin test. Peptides 94:71–77PubMedGoogle Scholar
  85. Rorick-Kehn LM, Ciccocioppo R, Wong CJ, Witkin JM, Martinez-Grau MA, Stopponi S, Adams BL, Katner JS, Perry KW, Toledo MA, Diaz N, Lafuente C, Jimenez A, Benito A, Pedregal C, Weiss F, Statnick MA (2016) A novel, orally bioavailable nociceptin receptor antagonist, LY2940094, reduces ethanol self-administration and ethanol seeking in animal models. Alcohol Clin Exp Res 40:945–954PubMedPubMedCentralGoogle Scholar
  86. Ross TM, Battista K, Bignan GC, Brenneman DE, Connolly PJ, Liu J, Middleton SA, Orsini M, Reitz AB, Rosenthal DI, Scott MK, Vaidya AH (2015) A selective small molecule NOP (ORL-1 receptor) partial agonist for the treatment of anxiety. Bioorg Med Chem Lett 25:602–606Google Scholar
  87. Rover S, Adam G, Cesura AM, Galley G, Jenck F, Monsma FJ Jr, Wichmann J, Dautzenberg FM (2000) High-affinity, non-peptide agonists for the ORL1 (orphanin FQ/nociceptin) receptor. J Med Chem 43:1329–1338PubMedGoogle Scholar
  88. Salat K, Furgala A, Salat R (2018) Evaluation of cebranopadol, a dually acting nociceptin/orphanin FQ and opioid receptor agonist in mouse models of acute, tonic, and chemotherapy-induced neuropathic pain. Inflammopharmacology 26:361–374PubMedGoogle Scholar
  89. Satoh A, Sagara T, Sakoh H, Hashimoto M, Nakashima H, Kato T, Goto Y, Mizutani S, Azuma-Kanoh T, Tani T, Okuda S, Okamoto O, Ozaki S, Iwasawa Y, Ohta H, Kawamoto H (2009) Identification of an orally active opioid receptor-like 1 (ORL1) receptor antagonist 4-{3-[(2R)-2,3-dihydroxypropyl]-2-oxo-2,3-dihydro-1H-benzimidazol-1-yl}-1-[(1S,3S,4R)-spiro[bicyclo[2.2.1]heptane-2,1′-cyclopropan]-3-ylmethyl]piperidine as clinical candidate. J Med Chem 52:4091–4094PubMedGoogle Scholar
  90. Schiene K, Tzschentke TM, Schröder W, Christoph T (2015) Mechanical hyperalgesia in rats with diabetic polyneuropathy is selectively inhibited by local peripheral nociceptin/orphanin FQ receptor and μ-opioid receptor agonism. Eur J Pharmacol 754:61–65PubMedGoogle Scholar
  91. Schiene K, Schroder W, Linz K, Frosch S, Tzschentke TM, Christoph T, Xie JY, Porreca F (2018) Inhibition of experimental visceral pain in rodents by cebranopadol. Behav Pharmacol.  https://doi.org/10.1097/FBP.0000000000000420 PubMedGoogle Scholar
  92. Schmid CL, Kennedy NM, Ross NC, Lovell KM, Yue Z, Morgenweck J, Cameron MD, Bannister TD, Bohn LM (2017) Bias factor and therapeutic window correlate to predict safer opioid analgesics. Cell 171:1165–1175.e13PubMedPubMedCentralGoogle Scholar
  93. Scholz A, Bothmer J, Kok M, Hoschen K, Daniels S (2018) Cebranopadol: a novel, first-in-class, strong analgesic: results from a randomized phase iia clinical trial in postoperative acute pain. Pain Physician 21:E193–E206PubMedPubMedCentralGoogle Scholar
  94. Schröder W, Lambert DG, Ko MC, Koch T (2014) Functional plasticity of the N/OFQ-NOP receptor system determines analgesic properties of NOP receptor agonists. Br J Pharmacol 171:3777–3800PubMedPubMedCentralGoogle Scholar
  95. Schunk S, Linz K, Hinze C, Frormann S, Oberbörsch S, Sundermann B, Zemolka S, Englberger W, Germann T, Christoph T, Kögel B-Y, Schröder W, Harlfinger S, Saunders D, Kless A, Schick H, Sonnenschein H (2014) Discovery of a potent analgesic NOP and opioid receptor agonist: cebranopadol. ACS Med Chem Lett 5:857–862PubMedPubMedCentralGoogle Scholar
  96. Shoblock JR (2007) The pharmacology of Ro 64-6198, a systemically active, nonpeptide NOP receptor (opiate receptor-like 1, ORL-1) agonist with diverse preclinical therapeutic activity. CNS Drug Rev 13:107–136PubMedGoogle Scholar
  97. Shoblock JR, Wichmann J, Maidment NT (2005) The effect of a systemically active ORL-1 agonist, Ro 64-6198, on the acquisition, expression, extinction, and reinstatement of morphine conditioned place preference. Neuropharmacology 49:439–446Google Scholar
  98. Sobczak M, Mokrowiecka A, Cygankiewicz AI, Zakrzewski PK, Salaga M, Storr M, Kordek R, Malecka-Panas E, Krajewska WM, Fichna J (2014) Anti-inflammatory and antinociceptive action of an orally available nociceptin receptor agonist SCH 221510 in a mouse model of inflammatory bowel diseases. J Pharmacol Exp Ther 348:401–409PubMedGoogle Scholar
  99. Soergel DG, Subach RA, Burnham N, Lark MW, James IE, Sadler BM, Skobieranda F, Violin JD, Webster LR (2014) Biased agonism of the μ-opioid receptor by TRV130 increases analgesia and reduces on-target adverse effects versus morphine: a randomized, double-blind, placebo-controlled, crossover study in healthy volunteers. Pain 155:1829–1835PubMedGoogle Scholar
  100. Spagnolo B, Calo G, Polgar WE, Jiang F, Olsen CM, Berzetei-Gurske I, Khroyan TV, Husbands SM, Lewis JW, Toll L, Zaveri NT (2008) Activities of mixed NOP and mu-opioid receptor ligands. Br J Pharmacol 153:609–619PubMedGoogle Scholar
  101. Sukhtankar DD, Zaveri NT, Husbands SM, Ko MC (2013) Effects of spinally administered bifunctional nociceptin/orphanin FQ peptide receptor/mu-opioid receptor ligands in mouse models of neuropathic and inflammatory pain. J Pharmacol Exp Ther 346:11–22PubMedPubMedCentralGoogle Scholar
  102. Sukhtankar DD, Lagorio CH, Ko M-C (2014a) Effects of the NOP agonist SCH221510 on producing and attenuating reinforcing effects as measured by drug self-administration in rats. Eur J Pharmacol 745:182–189PubMedPubMedCentralGoogle Scholar
  103. Sukhtankar DD, Lee H, Rice KC, Ko MC (2014b) Differential effects of opioid-related ligands and NSAIDs in nonhuman primate models of acute and inflammatory pain. Psychopharmacology (Berl) 231:1377–1387Google Scholar
  104. Teshima K, Minoguchi M, Tounai S, Ashimori A, Eguchi J, Allen CN, Shibata S (2005) Nonphotic entrainment of the circadian body temperature rhythm by the selective ORL1 receptor agonist W-212393 in rats. Br J Pharmacol 146:33–40PubMedPubMedCentralGoogle Scholar
  105. Thompson AA, Liu W, Chun E, Katritch V, Wu H, Vardy E, Huang XP, Trapella C, Guerrini R, Calo G, Roth BL, Cherezov V, Stevens RC (2012) Structure of the nociceptin/orphanin FQ receptor in complex with a peptide mimetic. Nature 485:395–399PubMedPubMedCentralGoogle Scholar
  106. Toledo MA, Pedregal C, Lafuente C, Diaz N, Martinez-Grau MA, Jimenez A, Benito A, Torrado A, Mateos C, Joshi EM, Kahl SD, Rash KS, Mudra DR, Barth VN, Shaw DB, McKinzie D, Witkin JM, Statnick MA (2014) Discovery of a novel series of orally active nociceptin/orphanin FQ (NOP) receptor antagonists based on a dihydrospiro(piperidine-4,7′-thieno[2,3-c]pyran) scaffold. J Med Chem 57:3418–3429PubMedPubMedCentralGoogle Scholar
  107. Toll L, Khroyan TV, Polgar WE, Jiang F, Olsen C, Zaveri NT (2009) Comparison of the antinociceptive and antirewarding profiles of novel bifunctional nociceptin receptor/mu-opioid receptor ligands: implications for therapeutic applications. J Pharmacol Exp Ther 331:954–964PubMedPubMedCentralGoogle Scholar
  108. Toll L, Bruchas MR, Calo G, Cox BM, Zaveri NT (2016) Nociceptin/orphanin FQ receptor structure, signaling, ligands, functions, and interactions with opioid systems. Pharmacol Rev 68:419–457PubMedPubMedCentralGoogle Scholar
  109. Trapella C, Guerrini R, Piccagli L, Calo G, Carra G, Spagnolo B, Rubini S, Fanton G, Hebbes C, McDonald J, Lambert David G, Regoli D, Salvadori S (2006) Identification of an achiral analogue of J-113397 as potent nociceptin/orphanin FQ receptor antagonist. Bioorg Med Chem 14:692–704PubMedGoogle Scholar
  110. Tzschentke TM, Rutten K (2018) Mu-opioid peptide (MOP) and nociceptin/orphanin FQ peptide (NOP) receptor activation both contribute to the discriminative stimulus properties of cebranopadol in the rat. Neuropharmacology 129:100–108PubMedGoogle Scholar
  111. Tzschentke TM, Kogel BY, Frosch S, Linz K (2017) Limited potential of cebranopadol to produce opioid-type physical dependence in rodents. Addict Biol.  https://doi.org/10.1111/adb.12550 PubMedGoogle Scholar
  112. Ubaldi M, Bifone A, Ciccocioppo R (2013) Translational approach to develop novel medications on alcohol addiction: focus on neuropeptides. Curr Opin Neurobiol 23:684–691PubMedPubMedCentralGoogle Scholar
  113. Vang D, Paul JA, Nguyen J, Tran H, Vincent L, Yasuda D, Zaveri NT, Gupta K (2015) Small-molecule nociceptin receptor agonist ameliorates mast cell activation and pain in sickle mice. Haematologica 100:1517–1525PubMedPubMedCentralGoogle Scholar
  114. Varty GB, Hyde LA, Hodgson RA, Lu SX, McCool MF, Kazdoba TM, Del Vecchio RA, Guthrie DH, Pond AJ, Grzelak ME, Xu X, Korfmacher WA, Tulshian D, Parker EM, Higgins GA (2005) Characterization of the nociceptin receptor (ORL-1) agonist, Ro64-6198, in tests of anxiety across multiple species. Psychopharmacology (Berl) 182:132–143Google Scholar
  115. Varty GB, Lu SX, Morgan CA, Cohen-Williams ME, Hodgson RA, Smith-Torhan A, Zhang H, Fawzi AB, Graziano MP, Ho GD, Matasi J, Tulshian D, Coffin VL, Carey GJ (2008) The anxiolytic-like effects of the novel, orally active nociceptin opioid receptor agonist 8-[bis(2-methylphenyl)methyl]-3-phenyl-8-azabicyclo[3.2.1]octan-3-ol (SCH 221510). J Pharmacol Exp Ther 326:672–682PubMedPubMedCentralGoogle Scholar
  116. Viaro R, Sanchez-Pernaute R, Marti M, Trapella C, Isacson O, Morari M (2008) Nociceptin/orphanin FQ receptor blockade attenuates MPTP-induced parkinsonism. Neurobiol Dis 30:430–438PubMedPubMedCentralGoogle Scholar
  117. Wichmann J, Adam G, Rover S, Hennig M, Scalone M, Cesura AM, Dautzenberg FM, Jenck F (2000) Synthesis of (1S,3aS)-8-(2,3,3a,4,5, 6-hexahydro-1H-phenalen-1-yl)-1-phenyl-1,3,8-triaza-spiro[4. 5]decan-4-one, a potent and selective orphanin FQ (OFQ) receptor agonist with anxiolytic-like properties. Eur J Med Chem 35:839–851PubMedGoogle Scholar
  118. Witkin JM, Statnick MA, Rorick-Kehn LM, Pintar JE, Ansonoff M, Chen Y, Tucker RC, Ciccocioppo R (2014) The biology of nociceptin/orphanin FQ (N/OFQ) related to obesity, stress, anxiety, mood, and drug dependence. Pharmacol Ther 141:283–299PubMedPubMedCentralGoogle Scholar
  119. Witkin JM, Rorick-Kehn LM, Benvenga MJ, Adams BL, Gleason SD, Knitowski KM, Li X, Chaney S, Falcone JF, Smith JW, Foss J, Lloyd K, Catlow JT, McKinzie DL, Svensson KA, Barth VN, Toledo MA, Diaz N, Lafuente C, Jimenez A, Benito A, Pedregal C, Martinez-Grau MA, Post A, Ansonoff MA, Pintar JE, Statnick MA (2016) Preclinical findings predicting efficacy and side-effect profile of LY2940094, an antagonist of nociceptin receptors. Pharmacol Res Perspect 4:e00275PubMedPubMedCentralGoogle Scholar
  120. Woodcock A, McLeod RL, Sadeh J, Smith JA (2010) The efficacy of a NOP1 agonist (SCH486757) in subacute cough. Lung 188(Suppl 1):S47–S52PubMedPubMedCentralGoogle Scholar
  121. Wu Q, Liu L (2018) ORL1 activation mediates a novel ORL1 receptor agonist SCH221510 analgesia in neuropathic pain in rats. J Mol Neurosci 66:10–16PubMedPubMedCentralGoogle Scholar
  122. Yoshizumi T, Miyazoe H, Ito H, Tsujita T, Takahashi H, Asai M, Ozaki S, Ohta H, Okamoto O (2008a) Design, synthesis, and structure-activity relationship study of a novel class of ORL1 receptor antagonists based on N-biarylmethyl spiropiperidine. Bioorg Med Chem Lett 18:3778–3782PubMedGoogle Scholar
  123. Yoshizumi T, Takahashi H, Miyazoe H, Sugimoto Y, Tsujita T, Kato T, Ito H, Kawamoto H, Hirayama M, Ichikawa D, Azuma-Kanoh T, Ozaki S, Shibata Y, Tani T, Chiba M, Ishii Y, Okuda S, Tadano K, Fukuroda T, Okamoto O, Ohta H (2008b) A novel class of cycloalkano[b]pyridines as potent and orally active opioid receptor-like 1 antagonists with minimal binding affinity to the hERG K+ channel. J Med Chem 51:4021–4029PubMedGoogle Scholar
  124. Zaratin PF, Petrone G, Sbacchi M, Garnier M, Fossati C, Petrillo P, Ronzoni S, Giardina GA, Scheideler MA (2004) Modification of nociception and morphine tolerance by the selective opiate receptor-like orphan receptor antagonist (−)-cis-1-methyl-7-[[4-(2,6-dichlorophenyl)piperidin-1-yl]methyl]-6,7,8,9- tetrahydro-5H-benzocyclohepten-5-ol (SB-612111). J Pharmacol Exp Ther 308:454–461PubMedPubMedCentralGoogle Scholar
  125. Zaveri NT (2016) Nociceptin opioid receptor (NOP) as a therapeutic target: progress in translation from preclinical research to clinical utility. J Med Chem 59:7011–7028PubMedPubMedCentralGoogle Scholar
  126. Zaveri N, Polgar WE, Olsen CM, Kelson AB, Grundt P, Lewis JW, Toll L (2001) Characterization of opiates, neuroleptics, and synthetic analogs at ORL1 and opioid receptors. Eur J Pharmacol 428:29–36PubMedPubMedCentralGoogle Scholar
  127. Zaveri NT, Jiang F, Olsen Cris M, Deschamps Jeffrey R, Parrish D, Polgar W, Toll L (2004) A novel series of piperidin-4-yl-1,3-dihydroindol-2-ones as agonist and antagonist ligands at the nociceptin receptor. J Med Chem 47:2973–2976PubMedGoogle Scholar
  128. Zaveri N, Jiang F, Olsen C, Polgar W, Toll L (2005) Small-molecule agonists and antagonists of the opioid receptor-like receptor (ORL1, NOP): ligand-based analysis of structural factors influencing intrinsic activity at NOP. AAPS J 7:E345–E352PubMedPubMedCentralGoogle Scholar
  129. Zaveri NT, Jiang F, Olsen C, Polgar WE, Toll L (2013a) Designing bifunctional NOP receptor-mu opioid receptor ligands from NOP receptor-selective scaffolds. Part 1. Bioorg Med Chem Lett 23:3308–3313PubMedPubMedCentralGoogle Scholar
  130. Zaveri NT, Yasuda D, Journigan VB, Daga PD, Jiang F, Olsen C (2013b) Structure-activity relationships of nociceptin receptor (NOP) ligands and the design of bifunctional NOP/mu opioid receptor-targeted ligands. In: Ko MC, Husbands SM (eds) Research and development of opioid-related analgesics. American Chemical Society, Washington, DC, pp 145–160Google Scholar
  131. Zaveri NT, Journigan VB, Polgar WE (2015) Discovery of the first small-molecule opioid pan antagonist with nanomolar affinity at mu, delta, kappa, and nociceptin opioid receptors. ACS Chem Nerosci 6:646–657Google Scholar
  132. Zaveri NT, Marquez PV, Meyer ME, Hamid A, Lutfy K (2018a) The nociceptin receptor (NOP) agonist AT-312 blocks acquisition of morphine- and cocaine-induced conditioned place preference in mice. Front Psych 9:638Google Scholar
  133. Zaveri NT, Marquez PV, Meyer ME, Polgar WE, Hamid A, Lutfy K (2018b) A novel and selective nociceptin receptor (NOP) agonist (1-(1-((cis)-4-isopropylcyclohexyl) piperidin-4-yl)-1H-indol-2-yl)methanol (AT-312) decreases acquisition of ethanol-induced conditioned place preference in mice. Alcohol Clin Exp Res 42:461–471PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Astraea Therapeutics, LLC.Mountain ViewUSA

Personalised recommendations