Effects of NOP-Related Ligands in Nonhuman Primates

  • Norikazu Kiguchi
  • Mei-Chuan KoEmail author
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 254)


The nociceptin/orphanin FQ peptide (NOP) receptor-related ligands have been demonstrated in preclinical studies for several therapeutic applications. This article highlights (1) how nonhuman primates (NHP) were used to facilitate the development and application of positron emission tomography tracers in humans; (2) effects of an endogenous NOP ligand, nociceptin/orphanin FQ, and its interaction with mu opioid peptide (MOP) receptor agonists; and (3) promising functional profiles of NOP-related agonists in NHP as analgesics and treatment for substance use disorders. NHP models offer the most phylogenetically appropriate evaluation of opioid and non-opioid receptor functions and drug effects. Based on preclinical and clinical data of ligands with mixed NOP/MOP receptor agonist activity, several factors including their intrinsic efficacies for activating NOP versus MOP receptors and different study endpoints in NHP could contribute to different pharmacological profiles. Ample evidence from NHP studies indicates that bifunctional NOP/MOP receptor agonists have opened an exciting avenue for developing safe, effective medications with fewer side effects for treating pain and drug addiction. In particular, bifunctional NOP/MOP partial agonists hold a great potential as (1) effective spinal analgesics without itch side effects; (2) safe, nonaddictive analgesics without opioid side effects such as respiratory depression; and (3) effective medications for substance use disorders.


Analgesics Bifunctional ligands Chronic pain Drug abuse Inflammatory pain MOP receptor NOP receptor Opioids Parkinson’s disease Primate Spinal cord 



The US National Institutes of Health, National Institute on Drug Abuse (DA032568, DA035359, DA040104, and DA044775), National Institute of Arthritis and Musculoskeletal and Skin Diseases (AR059193 and AR064456), and the US Department of Defense (W81XWH-13-2-0045) supported part of findings described in this article. The content is solely the responsibility of the authors and does not necessarily represent the official views of the US federal agencies.

Conflict of Interest

N.K. and M.C.K. declare that there is no conflict of interest.


  1. Anand P, Yiangou Y, Anand U, Mukerji G, Sinisi M, Fox M, McQuillan A, Quick T, Korchev YE, Hein P (2016) Nociceptin/orphanin FQ receptor expression in clinical pain disorders and functional effects in cultured neurons. Pain 157:1960–1969Google Scholar
  2. Anton B, Fein J, To T, Li X, Silberstein L, Evans CJ (1996) Immunohistochemical localization of ORL-1 in the central nervous system of the rat. J Comp Neurol 368:229–251PubMedPubMedCentralGoogle Scholar
  3. Ator NA, Griffiths RR (2003) Principles of drug abuse liability assessment in laboratory animals. Drug Alcohol Depend 70:S55–S72PubMedGoogle Scholar
  4. Aubrun F, Mazoit JX, Riou B (2012) Postoperative intravenous morphine titration. Br J Anaesth 108:193–201PubMedGoogle Scholar
  5. Bridge KE, Wainwright A, Reilly K, Oliver KR (2003) Autoradiographic localization of (125)i[Tyr(14)] nociceptin/orphanin FQ binding sites in macaque primate CNS. Neuroscience 118:513–523PubMedPubMedCentralGoogle Scholar
  6. Brill S, Gurman GM, Fisher A (2003) A history of neuraxial administration of local analgesics and opioids. Eur J Anaesthesiol 20:682–689PubMedGoogle Scholar
  7. Brix Finnerup N, Hein Sindrup S, Staehelin Jensen T (2013) Management of painful neuropathies. Handb Clin Neurol 115:279–290PubMedGoogle Scholar
  8. Bunzow JR, Saez C, Mortrud M, Bouvier C, Williams JT, Low M, Grandy DK (1994) Molecular cloning and tissue distribution of a putative member of the rat opioid receptor gene family that is not a mu, delta or kappa opioid receptor type. FEBS Lett 347:284–288PubMedPubMedCentralGoogle Scholar
  9. Butelman ER, France CP, Woods JH (1993) Apparent pA2 analysis on the respiratory depressant effects of alfentanil, etonitazene, ethylketocyclazocine (EKC) and Mr2033 in rhesus monkeys. J Pharmacol Exp Ther 264:145–151PubMedGoogle Scholar
  10. Butelman ER, Ko MC, Traynor JR, Vivian JA, Kreek MJ, Woods JH (2001) GR89,696: a potent kappa-opioid agonist with subtype selectivity in rhesus monkeys. J Pharmacol Exp Ther 298:1049–1059PubMedGoogle Scholar
  11. Calo’ G, Guerrini R (2013) Medicinal chemistry, pharmacology, and biological actions of peptide ligands selective for the nociceptin/orphanin FQ receptor. In: Ko MC, Husbands SM (eds) Research and development of opioid-related ligands. American Chemical Society, Washington, pp 275–325. CrossRefGoogle Scholar
  12. Calo G, Lambert DG (2018) Nociceptin/orphanin FQ receptor ligands and translational challenges: focus on cebranopadol as an innovative analgesic. Br J Anaesth 121:1105–1114PubMedPubMedCentralGoogle Scholar
  13. Calo G, Rizzi A, Cifani C, Micioni Di Bonaventura MV, Regoli D, Massi M, Salvadori S, Lambert DG, Guerrini R (2011) UFP-112 a potent and long-lasting agonist selective for the nociceptin/orphanin FQ receptor. CNS Neurosci Ther 17:178–198Google Scholar
  14. Calo G, Rizzi A, Marzola G, Guerrini R, Salvadori S, Beani L, Regoli D, Bianchi C (1998) Pharmacological characterization of the nociceptin receptor mediating hyperalgesia in the mouse tail withdrawal assay. Br J Pharmacol 125:373–378PubMedPubMedCentralGoogle Scholar
  15. Calo G, Rizzi A, Ruzza C, Ferrari F, Pacifico S, Gavioli EC, Salvadori S, Guerrini R (2018) Peptide welding technology – a simple strategy for generating innovative ligands for G protein coupled receptors. Peptides 99:195–204PubMedGoogle Scholar
  16. Caraway D, Walker V, Becker L, Hinnenthal J (2015) Successful discontinuation of systemic opioids after implantation of an intrathecal drug delivery system. Neuromodulation 18:508–515. Discussion 515–506PubMedGoogle Scholar
  17. Cerlesi MC, Ding H, Bird MF, Kiguchi N, Ferrari F, Malfacini D, Rizzi A, Ruzza C, Lambert DG, Ko MC, Calo G, Guerrini R (2017) Pharmacological studies on the NOP and opioid receptor agonist PWT2-[Dmt(1)]N/OFQ(1-13). Eur J Pharmacol 794:115–126PubMedGoogle Scholar
  18. Chen J, Kang D, Xu J, Lake M, Hogan JO, Sun C, Walter K, Yao B, Kim D (2013) Species differences and molecular determinant of TRPA1 cold sensitivity. Nat Commun 4:2501PubMedPubMedCentralGoogle Scholar
  19. Christoph A, Eerdekens MH, Kok M, Volkers G, Freynhagen R (2017) Cebranopadol, a novel first-in-class analgesic drug candidate: first experience in patients with chronic low back pain in a randomized clinical trial. Pain 158:1813–1824PubMedPubMedCentralGoogle Scholar
  20. Cornelissen JC, Steele FF, Tenney RD, Obeng S, Rice KC, Zhang Y, Banks ML (2019) Role of mu-opioid agonist efficacy on antinociceptive interactions between mu agonists and the nociceptin opioid peptide agonist Ro 64-6198 in rhesus monkeys. Eur J Pharmacol 844:175–182PubMedGoogle Scholar
  21. Courteix C, Coudore-Civiale MA, Privat AM, Pelissier T, Eschalier A, Fialip J (2004) Evidence for an exclusive antinociceptive effect of nociceptin/orphanin FQ, an endogenous ligand for the ORL1 receptor, in two animal models of neuropathic pain. Pain 110:236–245PubMedGoogle Scholar
  22. Cox BM, Christie MJ, Devi L, Toll L, Traynor JR (2015) Challenges for opioid receptor nomenclature: IUPHAR review 9. Br J Pharmacol 172:317–323Google Scholar
  23. Cremeans CM, Gruley E, Kyle DJ, Ko MC (2012) Roles of mu-opioid receptors and nociceptin/orphanin FQ peptide receptors in buprenorphine-induced physiological responses in primates. J Pharmacol Exp Ther 343:72–81PubMedPubMedCentralGoogle Scholar
  24. Czoty PW, Epperly P, Davenport A, Ko MC, Husbands SM, Flynn S (2017) Effects of BU08028, a mixed mu opioid receptor and nociceptin/orphanin FQ peptide (NOP) receptor agonist, on alcohol drinking in rhesus monkeys. Neuropsychopharmacology 43:S630Google Scholar
  25. Dahan A, Boom M, Sarton E, Hay J, Groeneveld GJ, Neukirchen M, Bothmer J, Aarts L, Olofsen E (2017) Respiratory effects of the nociceptin/orphanin FQ peptide and opioid receptor agonist, cebranopadol, in healthy human volunteers. Anesthesiology 126:697–707Google Scholar
  26. Devine DP, Reinscheid RK, Monsma FJ Jr, Civelli O, Akil H (1996) The novel neuropeptide orphanin FQ fails to produce conditioned place preference or aversion. Brain Res 727:225–229PubMedGoogle Scholar
  27. Di Giannuario A, Pieretti S (2000) Nociceptin differentially affects morphine-induced dopamine release from the nucleus accumbens and nucleus caudate in rats. Peptides 21:1125–1130PubMedPubMedCentralGoogle Scholar
  28. Ding H, Czoty PW, Kiguchi N, Cami-Kobeci G, Sukhtankar DD, Nader MA, Husbands SM, Ko MC (2016) A novel orvinol analog, BU08028, as a safe opioid analgesic without abuse liability in primates. Proc Natl Acad Sci U S A 113:E5511–E5518PubMedPubMedCentralGoogle Scholar
  29. Ding H, Hayashida K, Suto T, Sukhtankar DD, Kimura M, Mendenhall V, Ko MC (2015) Supraspinal actions of nociceptin/orphanin FQ, morphine and substance P in regulating pain and itch in non-human primates. Br J Pharmacol 172:3302–3312PubMedPubMedCentralGoogle Scholar
  30. Ding H, Kiguchi N, Kishioka S, Ma T, Peters CM, Ko MC (2018a) Differential mRNA expression of neuroinflammatory modulators in the spinal cord and thalamus of type 2 diabetic monkeys. J Diabetes 10:886–895PubMedGoogle Scholar
  31. Ding H, Kiguchi N, Perrey DA, Nguyen T, Czoty PW, Zhang Y, Ko MC (2018b) Reinforcing, antinociceptive, and pruritic effects of a G protein-biased mu opioid receptor agonist, PZM21, in primates. FASEB J 32(1_Suppl):683Google Scholar
  32. Ding H, Kiguchi N, Yasuda D, Daga PR, Polgar WE, Lu JJ, Czoty PW, Kishioka S, Zaveri NT, Ko MC (2018c) A bifunctional nociceptin and mu opioid receptor agonist is analgesic without opioid side effects in nonhuman primates. Sci Transl Med 10:eaar3483Google Scholar
  33. Dumas EO, Pollack GM (2008) Opioid tolerance development: a pharmacokinetic/pharmacodynamic perspective. AAPS J 10:537–551PubMedPubMedCentralGoogle Scholar
  34. Eerdekens MH, Kapanadze S, Koch ED, Kralidis G, Volkers G, Ahmedzai SH, Meissner W (2018) Cancer-related chronic pain: investigation of the novel analgesic drug candidate cebranopadol in a randomized, double-blind, noninferiority trial. Eur J Pain. PubMedGoogle Scholar
  35. Ferguson LB, Harris RA, Mayfield RD (2018) From gene networks to drugs: systems pharmacology approaches for AUD. Psychopharmacology (Berl) 235:1635–1662Google Scholar
  36. Fields HL, Margolis EB (2015) Understanding opioid reward. Trends Neurosci 38:217–225PubMedPubMedCentralGoogle Scholar
  37. Flau K, Redmer A, Liedtke S, Kathmann M, Schlicker E (2002) Inhibition of striatal and retinal dopamine release via nociceptin/orphanin FQ receptors. Br J Pharmacol 137:1355–1361PubMedPubMedCentralGoogle Scholar
  38. Fukuda K, Kato S, Mori K, Nishi M, Takeshima H, Iwabe N, Miyata T, Houtani T, Sugimoto T (1994) cDNA cloning and regional distribution of a novel member of the opioid receptor family. FEBS Lett 343:42–46PubMedPubMedCentralGoogle Scholar
  39. Ganesh A, Maxwell LG (2007) Pathophysiology and management of opioid-induced pruritus. Drugs 67:2323–2333PubMedGoogle Scholar
  40. Giovacchini G, Squitieri F, Esmaeilzadeh M, Milano A, Mansi L, Ciarmiello A (2011) PET translates neurophysiology into images: a review to stimulate a network between neuroimaging and basic research. J Cell Physiol 226:948–961PubMedGoogle Scholar
  41. Gohler K, Sokolowska M, Schoedel KA, Nemeth R, Kleideiter E, Szeto I, Eerdekens MH (2019) Assessment of the abuse potential of cebranopadol in nondependent recreational opioid users: a phase 1 randomized controlled study. J Clin Psychopharmacol 39:46–56Google Scholar
  42. Hans GH (2013) Buprenorphine in the treatment of neuropathic pain. In: Ko MC, Husbands SM (eds) Research and development of opioid-related ligands. American Chemical Society, Washington, pp 103–123. CrossRefGoogle Scholar
  43. Hao JX, Xu IS, Wiesenfeld-Hallin Z, Xu XJ (1998) Anti-hyperalgesic and anti-allodynic effects of intrathecal nociceptin/orphanin FQ in rats after spinal cord injury, peripheral nerve injury and inflammation. Pain 76:385–393PubMedGoogle Scholar
  44. Hawes BE, Graziano MP, Lambert DG (2000) Cellular actions of nociceptin: transduction mechanisms. Peptides 21:961–967PubMedGoogle Scholar
  45. Hawkinson JE, Szoke BG, Garofalo AW, Hom DS, Zhang H, Dreyer M, Fukuda JY, Chen L, Samant B, Simmonds S, Zeitz KP, Wadsworth A, Liao A, Chavez RA, Zmolek W, Ruslim L, Bova MP, Holcomb R, Butelman ER, Ko MC, Malmberg AB (2007) Pharmacological, pharmacokinetic, and primate analgesic efficacy profile of the novel bradykinin B1 receptor antagonist ELN441958. J Pharmacol Exp Ther 322:619–630PubMedGoogle Scholar
  46. Heinig K, Kratochwil N, Bucheli F, Thomae A (2010) Bioanalytics and pharmacokinetics of the nociceptin/orphanin FQ peptide receptor agonist RO0646198 in Wistar rats and Cynomolgus monkeys. J Chromatogr B Anal Technol Biomed Life Sci 878:2101–2105Google Scholar
  47. Hiranita T, Soto PL, Tanda G, Kopajtic TA, Katz JL (2013) Stimulants as specific inducers of dopamine-independent sigma agonist self-administration in rats. J Pharmacol Exp Ther 347:20–29PubMedPubMedCentralGoogle Scholar
  48. Hostetler ED, Sanabria-Bohorquez S, Eng W, Joshi AD, Patel S, Gibson RE, O’Malley S, Krause SM, Ryan C, Riffel K, Bi S, Okamoto O, Kawamoto H, Ozaki S, Ohta H, de Groot T, Bormans G, Depre M, de Hoon J, De Lepeleire I, Reynders T, Cook JJ, Burns HD, Egan M, Cho W, van Laere K, Hargreaves RJ (2013) Evaluation of [(1)(8)F]MK-0911, a positron emission tomography (PET) tracer for opioid receptor-like 1 (ORL1), in rhesus monkey and human. NeuroImage 68:1–10PubMedGoogle Scholar
  49. Hu E, Calo G, Guerrini R, Ko MC (2010) Long-lasting antinociceptive spinal effects in primates of the novel nociceptin/orphanin FQ receptor agonist UFP-112. Pain 148:107–113Google Scholar
  50. Ide S, Takahashi T, Takamatsu Y, Uhl GR, Niki H, Sora I, Ikeda K (2017) Distinct roles of opioid and dopamine systems in lateral hypothalamic intracranial self-stimulation. Int J Neuropsychopharmacol 20:403–409PubMedGoogle Scholar
  51. Inoue M, Shimohira I, Yoshida A, Zimmer A, Takeshima H, Sakurada T, Ueda H (1999) Dose-related opposite modulation by nociceptin/orphanin FQ of substance P nociception in the nociceptors and spinal cord. J Pharmacol Exp Ther 291:308–313PubMedGoogle Scholar
  52. Kane JM, Skuban A, Hobart M, Ouyang J, Weiller E, Weiss C, Correll CU (2016) Overview of short- and long-term tolerability and safety of brexpiprazole in patients with schizophrenia. Schizophr Res 174:93–98PubMedGoogle Scholar
  53. Kangas BD, Bergman J (2014) Operant nociception in nonhuman primates. Pain 155:1821–1828PubMedPubMedCentralGoogle Scholar
  54. Kantola I, Scheinin M, Gulbrandsen T, Meland N, Smerud KT (2017) Safety, tolerability, and antihypertensive effect of SER100, an opiate receptor-like 1 (ORL-1) partial agonist, in patients with isolated systolic hypertension. Clin Pharmacol Drug Dev 6:584–591PubMedGoogle Scholar
  55. Khroyan TV, Polgar WE, Cami-Kobeci G, Husbands SM, Zaveri NT, Toll L (2011) The first universal opioid ligand, (2S)-2-[(5R,6R,7R,14S)-N-cyclopropylmethyl-4,5-epoxy-6,14-ethano-3-hydroxy-6-meth oxymorphinan-7-yl]-3,3-dimethylpentan-2-ol (BU08028): characterization of the in vitro profile and in vivo behavioral effects in mouse models of acute pain and cocaine-induced reward. J Pharmacol Exp Ther 336:952–961PubMedPubMedCentralGoogle Scholar
  56. Khroyan TV, Polgar WE, Jiang F, Zaveri NT, Toll L (2009) Nociceptin/orphanin FQ receptor activation attenuates antinociception induced by mixed nociceptin/orphanin FQ/mu-opioid receptor agonists. J Pharmacol Exp Ther 331:946–953PubMedPubMedCentralGoogle Scholar
  57. Kiguchi N, Ding H, Cami-Kobeci G, Sukhtankar DD, Czoty PW, DeLoid HB, Hsu FC, Toll L, Husbands SM, Ko MC (2019) BU10038 as a safe opioid analgesic with fewer side effects after systemic and intrathecal administration in primates. Br J Anaesth.
  58. Kiguchi N, Ding H, Ko MC (2016) Central N/OFQ-NOP receptor system in pain modulation. Adv Pharmacol 75:217–243Google Scholar
  59. Kiguchi N, Ding H, Peters CM, Kock ND, Kishioka S, Cline JM, Wagner JD, Ko MC (2017) Altered expression of glial markers, chemokines, and opioid receptors in the spinal cord of type 2 diabetic monkeys. Biochim Biophys Acta 1863:274–283Google Scholar
  60. Kimura Y, Fujita M, Hong J, Lohith TG, Gladding RL, Zoghbi SS, Tauscher JA, Goebl N, Rash KS, Chen Z, Pedregal C, Barth VN, Pike VW, Innis RB (2011) Brain and whole-body imaging in rhesus monkeys of 11C-NOP-1A, a promising PET radioligand for nociceptin/orphanin FQ peptide receptors. J Nucl Med 52:1638–1645PubMedPubMedCentralGoogle Scholar
  61. Ko MC, Johnson MD, Butelman ER, Willmont KJ, Mosberg HI, Woods JH (1999) Intracisternal nor-binaltorphimine distinguishes central and peripheral kappa-opioid antinociception in rhesus monkeys. J Pharmacol Exp Ther 291:1113–1120PubMedPubMedCentralGoogle Scholar
  62. Ko MC, Naughton NN (2000) An experimental itch model in monkeys: characterization of intrathecal morphine-induced scratching and antinociception. Anesthesiology 92:795–805PubMedPubMedCentralGoogle Scholar
  63. Ko MC, Naughton NN (2009) Antinociceptive effects of nociceptin/orphanin FQ administered intrathecally in monkeys. J Pain 10:509–516PubMedPubMedCentralGoogle Scholar
  64. Ko MC, Naughton NN, Traynor JR, Song MS, Woods JH, Rice KC, McKnight AT (2002a) Orphanin FQ inhibits capsaicin-induced thermal nociception in monkeys by activation of peripheral ORL1 receptors. Br J Pharmacol 135:943–950PubMedPubMedCentralGoogle Scholar
  65. Ko MC, Terner J, Hursh S, Woods JH, Winger G (2002b) Relative reinforcing effects of three opioids with different durations of action. J Pharmacol Exp Ther 301:698–704PubMedGoogle Scholar
  66. Ko MC, Wei H, Woods JH, Kennedy RT (2006) Effects of intrathecally administered nociceptin/orphanin FQ in monkeys: behavioral and mass spectrometric studies. J Pharmacol Exp Ther 318:1257–1264PubMedGoogle Scholar
  67. Ko MC, Woods JH, Fantegrossi WE, Galuska CM, Wichmann J, Prinssen EP (2009) Behavioral effects of a synthetic agonist selective for nociceptin/orphanin FQ peptide receptors in monkeys. Neuropsychopharmacology 34:2088–2096PubMedPubMedCentralGoogle Scholar
  68. Koga K, Ichikawa D, Nambu H, Azuma-Kanoh T, Sakai N, Takaki-Kawagoe H, Ozaki S, Ohta H (2009) Cloning and characterization of the rhesus monkey nociceptin/orphanin FQ receptor. Genes Genet Syst 84:319–325PubMedGoogle Scholar
  69. Lambert DG (2008) The nociceptin/orphanin FQ receptor: a target with broad therapeutic potential. Nat Rev Drug Discov 7:694–710Google Scholar
  70. Lavonas EJ, Severtson SG, Martinez EM, Bucher-Bartelson B, Le Lait MC, Green JL, Murrelle LE, Cicero TJ, Kurtz SP, Rosenblum A, Surratt HL, Dart RC (2014) Abuse and diversion of buprenorphine sublingual tablets and film. J Subst Abus Treat 47:27–34Google Scholar
  71. Lee H, Ko MC (2015) Distinct functions of opioid-related peptides and gastrin-releasing peptide in regulating itch and pain in the spinal cord of primates. Sci Rep 5:11676PubMedPubMedCentralGoogle Scholar
  72. Lee H, Naughton NN, Woods JH, Ko MC (2003) Characterization of scratching responses in rats following centrally administered morphine or bombesin. Behav Pharmacol 14:501–508PubMedPubMedCentralGoogle Scholar
  73. Letchworth SR, Mathis JP, Rossi GC, Bodnar RJ, Pasternak GW (2000) Autoradiographic localization of (125)I[Tyr(14)]orphanin FQ/nociceptin and (125)I[Tyr(10)]orphanin FQ/nociceptin(1-11) binding sites in rat brain. J Comp Neurol 423:319–329Google Scholar
  74. Li J, Li JG, Chen C, Zhang F, Liu-Chen LY (2002) Molecular basis of differences in (−)(trans)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidiny)-cyclohexyl]benzeneacetamide-induced desensitization and phosphorylation between human and rat kappa-opioid receptors expressed in Chinese hamster ovary cells. Mol Pharmacol 61:73–84PubMedGoogle Scholar
  75. Lin AP, Ko MC (2013) The therapeutic potential of nociceptin/orphanin FQ receptor agonists as analgesics without abuse liability. ACS Chem Neurosci 4:214–224PubMedGoogle Scholar
  76. Linz K, Christoph T, Tzschentke TM, Koch T, Schiene K, Gautrois M, Schroder W, Kogel BY, Beier H, Englberger W, Schunk S, De Vry J, Jahnel U, Frosch S (2014) Cebranopadol: a novel potent analgesic nociceptin/orphanin FQ peptide and opioid receptor agonist. J Pharmacol Exp Ther 349:535–548Google Scholar
  77. Lohith TG, Zoghbi SS, Morse CL, Araneta MD, Barth VN, Goebl NA, Tauscher JT, Pike VW, Innis RB, Fujita M (2014) Retest imaging of [11C]NOP-1A binding to nociceptin/orphanin FQ peptide (NOP) receptors in the brain of healthy humans. NeuroImage 87:89–95PubMedGoogle Scholar
  78. Lohith TG, Zoghbi SS, Morse CL, Araneta MF, Barth VN, Goebl NA, Tauscher JT, Pike VW, Innis RB, Fujita M (2012) Brain and whole-body imaging of nociceptin/orphanin FQ peptide receptor in humans using the PET ligand 11C-NOP-1A. J Nucl Med 53:385–392PubMedPubMedCentralGoogle Scholar
  79. Manglik A, Lin H, Aryal DK, McCorvy JD, Dengler D, Corder G, Levit A, Kling RC, Bernat V, Hubner H, Huang XP, Sassano MF, Giguere PM, Lober S, Da D, Scherrer G, Kobilka BK, Gmeiner P, Roth BL, Shoichet BK (2016) Structure-based discovery of opioid analgesics with reduced side effects. Nature 537:185–190PubMedPubMedCentralGoogle Scholar
  80. Margas W, Sedeek K, Ruiz-Velasco V (2008) Coupling specificity of NOP opioid receptors to pertussis-toxin-sensitive Galpha proteins in adult rat stellate ganglion neurons using small interference RNA. J Neurophysiol 100:1420–1432PubMedPubMedCentralGoogle Scholar
  81. Mello NK, Negus SS (1996) Preclinical evaluation of pharmacotherapies for treatment of cocaine and opioid abuse using drug self-administration procedures. Neuropsychopharmacology 14:375–424PubMedGoogle Scholar
  82. Mercatelli D, Pisano CA, Novello S, Morari M (2019) NOP receptor ligands and Parkinson’s disease. Handb Exp Pharmacol. Google Scholar
  83. Meunier JC, Mollereau C, Toll L, Suaudeau C, Moisand C, Alvinerie P, Butour JL, Guillemot JC, Ferrara P, Monsarrat B et al (1995) Isolation and structure of the endogenous agonist of opioid receptor-like ORL1 receptor. Nature 377:532–535PubMedPubMedCentralGoogle Scholar
  84. Molinari S, Camarda V, Rizzi A, Marzola G, Salvadori S, Marzola E, Molinari P, McDonald J, Ko MC, Lambert DG, Calo G, Guerrini R (2013) [Dmt1]N/OFQ(1-13)-NH2: a potent nociceptin/orphanin FQ and opioid receptor universal agonist. Br J Pharmacol 168:151–162PubMedGoogle Scholar
  85. Mollereau C, Parmentier M, Mailleux P, Butour JL, Moisand C, Chalon P, Caput D, Vassart G, Meunier JC (1994) ORL1, a novel member of the opioid receptor family. Cloning, functional expression and localization. FEBS Lett 341:33–38PubMedPubMedCentralGoogle Scholar
  86. Moran TD, Abdulla FA, Smith PA (2000) Cellular neurophysiological actions of nociceptin/orphanin FQ. Peptides 21:969–976PubMedGoogle Scholar
  87. Murphy NP, Ly HT, Maidment NT (1996) Intracerebroventricular orphanin FQ/nociceptin suppresses dopamine release in the nucleus accumbens of anaesthetized rats. Neuroscience 75:1–4PubMedGoogle Scholar
  88. Narendran R, Ciccocioppo R, Lopresti B, Paris J, Himes ML, Mason NS (2018) Nociceptin receptors in alcohol use disorders: a positron emission tomography study using [(11)C]NOP-1A. Biol Psychiatry 84:708–714Google Scholar
  89. Neal CR Jr, Mansour A, Reinscheid R, Nothacker HP, Civelli O, Akil H, Watson SJ Jr (1999) Opioid receptor-like (ORL1) receptor distribution in the rat central nervous system: comparison of ORL1 receptor mRNA expression with (125)I-[(14)Tyr]-orphanin FQ binding. J Comp Neurol 412:563–605Google Scholar
  90. Negus SS, Butelman ER, Chang KJ, DeCosta B, Winger G, Woods JH (1994) Behavioral effects of the systemically active delta opioid agonist BW373U86 in rhesus monkeys. J Pharmacol Exp Ther 270:1025–1034PubMedGoogle Scholar
  91. Pan B, Schroder W, Jostock R, Schwartz M, Rosson G, Polydefkis M (2018) Nociceptin/orphanin FQ opioid peptide-receptor expression in pachyonychia congenita. J Peripher Nerv Syst 23:241–248PubMedGoogle Scholar
  92. Pedregal C, Joshi EM, Toledo MA, Lafuente C, Diaz N, Martinez-Grau MA, Jimenez A, Benito A, Navarro A, Chen Z, Mudra DR, Kahl SD, Rash KS, Statnick MA, Barth VN (2012) Development of LC-MS/MS-based receptor occupancy tracers and positron emission tomography radioligands for the nociceptin/orphanin FQ (NOP) receptor. J Med Chem 55:4955–4967PubMedGoogle Scholar
  93. Peirs C, Seal RP (2016) Neural circuits for pain: recent advances and current views. Science 354:578–584PubMedGoogle Scholar
  94. Peluso J, LaForge KS, Matthes HW, Kreek MJ, Kieffer BL, Gaveriaux-Ruff C (1998) Distribution of nociceptin/orphanin FQ receptor transcript in human central nervous system and immune cells. J Neuroimmunol 81:184–192Google Scholar
  95. Phillips KA, Bales KL, Capitanio JP, Conley A, Czoty PW, t’Hart BA, Hopkins WD, Hu SL, Miller LA, Nader MA, Nathanielsz PW, Rogers J, Shively CA, Voytko ML (2014) Why primate models matter. Am J Primatol 76:801–827PubMedPubMedCentralGoogle Scholar
  96. Pike VW, Rash KS, Chen Z, Pedregal C, Statnick MA, Kimura Y, Hong J, Zoghbi SS, Fujita M, Toledo MA, Diaz N, Gackenheimer SL, Tauscher JT, Barth VN, Innis RB (2011) Synthesis and evaluation of radioligands for imaging brain nociceptin/orphanin FQ peptide (NOP) receptors with positron emission tomography. J Med Chem 54:2687–2700PubMedPubMedCentralGoogle Scholar
  97. Podlesnik CA, Ko MC, Winger G, Wichmann J, Prinssen EP, Woods JH (2011) The effects of nociceptin/orphanin FQ receptor agonist Ro 64-6198 and diazepam on antinociception and remifentanil self-administration in rhesus monkeys. Psychopharmacology (Berl) 213:53–60Google Scholar
  98. Raffa RB, Burdge G, Gambrah J, Kinecki HE, Lin F, Lu B, Nguyen JT, Phan V, Ruan A, Sesay MA, Watkins TN (2017) Cebranopadol: novel dual opioid/NOP receptor agonist analgesic. J Clin Pharm Ther 42:8–17PubMedGoogle Scholar
  99. Raffa RB, Haidery M, Huang HM, Kalladeen K, Lockstein DE, Ono H, Shope MJ, Sowunmi OA, Tran JK, Pergolizzi JV Jr (2014) The clinical analgesic efficacy of buprenorphine. J Clin Pharm Ther 39:577–583PubMedGoogle Scholar
  100. Reinscheid RK, Nothacker HP, Bourson A, Ardati A, Henningsen RA, Bunzow JR, Grandy DK, Langen H, Monsma FJ Jr, Civelli O (1995) Orphanin FQ: a neuropeptide that activates an opioidlike G protein-coupled receptor. Science 270:792–794Google Scholar
  101. Rizzi A, Spagnolo B, Wainford RD, Fischetti C, Guerrini R, Marzola G, Baldisserotto A, Salvadori S, Regoli D, Kapusta DR, Calo G (2007) In vitro and in vivo studies on UFP-112, a novel potent and long lasting agonist selective for the nociceptin/orphanin FQ receptor. Peptides 28:1240–1251PubMedPubMedCentralGoogle Scholar
  102. Rizzi A, Sukhtankar DD, Ding H, Hayashida K, Ruzza C, Guerrini R, Calo G, Ko MC (2015) Spinal antinociceptive effects of the novel NOP receptor agonist PWT2-nociceptin/orphanin FQ in mice and monkeys. Br J Pharmacol 172:3661–3670PubMedPubMedCentralGoogle Scholar
  103. Saccone PA, Zelenock KA, Lindsey AM, Sulima A, Rice KC, Prinssen EP, Wichmann J, Woods JH (2016) Characterization of the discriminative stimulus effects of a NOP receptor agonist Ro 64-6198 in rhesus monkeys. J Pharmacol Exp Ther 357:17–23PubMedPubMedCentralGoogle Scholar
  104. Sakurada T, Katsuyama S, Sakurada S, Inoue M, Tan-No K, Kisara K, Sakurada C, Ueda H, Sasaki J (1999) Nociceptin-induced scratching, biting and licking in mice: involvement of spinal NK1 receptors. Br J Pharmacol 127:1712–1718PubMedPubMedCentralGoogle Scholar
  105. Satoh A, Sagara T, Sakoh H, Hashimoto M, Nakashima H, Kato T, Goto Y, Mizutani S, Azuma-Kanoh T, Tani T, Okuda S, Okamoto O, Ozaki S, Iwasawa Y, Ohta H, Kawamoto H (2009) Identification of an orally active opioid receptor-like 1 (ORL1) receptor antagonist 4-{3-[(2R)-2,3-dihydroxypropyl]-2-oxo-2,3-dihydro-1H-benzimidazol-1-yl}-1-[(1S,3S,4R)-spiro[bicyclo[2.2.1]heptane-2,1′-cyclopropan]-3-ylmethyl]piperidine as clinical candidate. J Med Chem 52:4091–4094PubMedGoogle Scholar
  106. Schattauer SS, Miyatake M, Shankar H, Zietz C, Levin JR, Liu-Chen LY, Gurevich VV, Rieder MJ, Chavkin C (2012) Ligand directed signaling differences between rodent and human kappa-opioid receptors. J Biol Chem 287:41595–41607PubMedPubMedCentralGoogle Scholar
  107. Schiene K, Schroder W, Linz K, Frosch S, Tzschentke TM, Jansen U, Christoph T (2018) Nociceptin/orphanin FQ opioid peptide (NOP) receptor and micro-opioid peptide (MOP) receptors both contribute to the anti-hypersensitive effect of cebranopadol in a rat model of arthritic pain. Eur J Pharmacol 832:90–95PubMedGoogle Scholar
  108. Schlicker E, Morari M (2000) Nociceptin/orphanin FQ and neurotransmitter release in the central nervous system. Peptides 21:1023–1029Google Scholar
  109. Scholz A, Bothmer J, Kok M, Hoschen K, Daniels S (2018) Cebranopadol: a novel, first-in-class, strong analgesic: results from a randomized phase IIa clinical trial in postoperative acute pain. Pain Physician 21:E193–E206Google Scholar
  110. Schroder W, Lambert DG, Ko MC, Koch T (2014) Functional plasticity of the N/OFQ-NOP receptor system determines analgesic properties of NOP receptor agonists. Br J Pharmacol 171:3777–3800PubMedPubMedCentralGoogle Scholar
  111. Schug SA, Saunders D, Kurowski I, Paech MJ (2006) Neuraxial drug administration: a review of treatment options for anaesthesia and analgesia. CNS Drugs 20:917–933PubMedGoogle Scholar
  112. Smyth C, Ahmadzai N, Wentzell J, Pardoe A, Tse A, Nguyen T, Goddard Y, Nair S, Poulin PA, Skidmore B, Ansari MT (2015) Intrathecal analgesia for chronic refractory pain: current and future prospects. Drugs 75:1957–1980PubMedGoogle Scholar
  113. Spagnolo B, Calo G, Polgar WE, Jiang F, Olsen CM, Berzetei-Gurske I, Khroyan TV, Husbands SM, Lewis JW, Toll L, Zaveri NT (2008) Activities of mixed NOP and mu-opioid receptor ligands. Br J Pharmacol 153:609–619PubMedGoogle Scholar
  114. Sukhtankar DD, Ko MC (2013) Physiological function of gastrin-releasing peptide and neuromedin B receptors in regulating itch scratching behavior in the spinal cord of mice. PLoS One 8:e67422PubMedPubMedCentralGoogle Scholar
  115. Sukhtankar DD, Lagorio CH, Ko MC (2014a) Effects of the NOP agonist SCH221510 on producing and attenuating reinforcing effects as measured by drug self-administration in rats. Eur J Pharmacol 745:182–189PubMedPubMedCentralGoogle Scholar
  116. Sukhtankar DD, Lee H, Rice KC, Ko MC (2014b) Differential effects of opioid-related ligands and NSAIDs in nonhuman primate models of acute and inflammatory pain. Psychopharmacology 231:1377–1387PubMedGoogle Scholar
  117. Sukhtankar DD, Zaveri NT, Husbands SM, Ko MC (2013) Effects of spinally administered bifunctional nociceptin/orphanin FQ peptide receptor/mu-opioid receptor ligands in mouse models of neuropathic and inflammatory pain. J Pharmacol Exp Ther 346:11–22PubMedPubMedCentralGoogle Scholar
  118. Toll L, Bruchas MR, Calo G, Cox BM, Zaveri NT (2016) Nociceptin/orphanin FQ receptor structure, signaling, ligands, functions, and interactions with opioid systems. Pharmacol Rev 68:419–457PubMedPubMedCentralGoogle Scholar
  119. Trapella C, Ding H, Kiguchi N, Calo G, Ko MC (2018) Reinforcing and antinociceptive effects of a mixed opioid and NOP receptor agonist, cebranopadol, in non-human primates. In: The 17th world congress on pain (IASP): meeting abstract, PST538Google Scholar
  120. van Niel JC, Schneider J, Tzschentke TM (2016) Efficacy of full micro-opioid receptor agonists is not impaired by concomitant buprenorphine or mixed opioid agonists/antagonists – preclinical and clinical evidence. Drug Res 66:562–570Google Scholar
  121. Vaughan CW, Christie MJ (1996) Increase by the ORL1 receptor (opioid receptor-like1) ligand, nociceptin, of inwardly rectifying K conductance in dorsal raphe nucleus neurones. Br J Pharmacol 117:1609–1611PubMedPubMedCentralGoogle Scholar
  122. Veening JG, Gerrits PO, Barendregt HP (2012) Volume transmission of beta-endorphin via the cerebrospinal fluid; a review. Fluids Barriers CNS 9:16PubMedPubMedCentralGoogle Scholar
  123. Wang J, Yuan W, Li MD (2011) Genes and pathways co-associated with the exposure to multiple drugs of abuse, including alcohol, amphetamine/methamphetamine, cocaine, marijuana, morphine, and/or nicotine: a review of proteomics analyses. Mol Neurobiol 44:269–286PubMedGoogle Scholar
  124. Wang JB, Johnson PS, Imai Y, Persico AM, Ozenberger BA, Eppler CM, Uhl GR (1994) cDNA cloning of an orphan opiate receptor gene family member and its splice variant. FEBS Lett 348:75–79PubMedPubMedCentralGoogle Scholar
  125. Waxler B, Dadabhoy ZP, Stojiljkovic L, Rabito SF (2005) Primer of postoperative pruritus for anesthesiologists. Anesthesiology 103:168–178PubMedGoogle Scholar
  126. Withey SL, Paronis CA, Bergman J (2018) Concurrent assessment of the antinociceptive and behaviorally disruptive effects of opioids in squirrel monkeys. J Pain 19:728–740PubMedPubMedCentralGoogle Scholar
  127. Witkin JM, Statnick MA, Rorick-Kehn LM, Pintar JE, Ansonoff M, Chen Y, Tucker RC, Ciccocioppo R (2014) The biology of nociceptin/orphanin FQ (N/OFQ) related to obesity, stress, anxiety, mood, and drug dependence. Pharmacol Ther 141:283–299PubMedPubMedCentralGoogle Scholar
  128. Wladischkin KA, Dysko RC, Collins GT, Ko YA, Winger G, Ko MC (2012) Pharmacological characterization of NOP receptor agonists as abuse-free and constipation-free analgesics in monkeys. FASEB J 26(Suppl):1123Google Scholar
  129. Zaveri NT (2016) Nociceptin opioid receptor (NOP) as a therapeutic target: progress in translation from preclinical research to clinical utility. J Med Chem 59:7011–7028PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of PharmacologyWakayama Medical UniversityWakayamaJapan
  2. 2.Department of Physiology and PharmacologyWake Forest School of MedicineWinston-SalemUSA

Personalised recommendations