Advertisement

pp 1-21 | Cite as

Translational Aspects of Brown Fat Activation by Food-Derived Stimulants

  • Takeshi Yoneshiro
  • Mami Matsushita
  • Masayuki Saito
Chapter
Part of the Handbook of Experimental Pharmacology book series

Abstract

Since the rediscovery of brown adipose tissue (BAT) in humans, its energy-dissipating ability has been well-recognized. The negative correlations of BAT activity with adiposity and insulin sensitivity provided an obvious rationale for discerning reliable and practical strategies for stimulating BAT. Though cold exposure or use of pharmacological adrenomimetics can activate BAT, they may have adverse effects. Therefore, determining alternative stimulants of BAT with lower risks such as commonly used food ingredients is highly desirable. Recent observations revealed that chemical activation of temperature-sensitive transient receptor potential (TRP) channels by food ingredients can recruit BAT in humans. Furthermore, animal studies have identified several food-derived stimulants of BAT acting through multiple mechanisms distinct from a TRP-mediated process. Dietary compounds acting as an activator of Sirtuin 1, a critical regulator of mitochondrial biogenesis and brown adipocyte differentiation, are one such class of promising food-derived BAT activators in humans. While the individual effects of various dietary factors are increasingly established in a laboratory setting, the potential synergistic effects of multiple stimulants on BAT remain to be tested in a clinical environment. These investigations may support the development of efficient, flexible dietary regimens capable of boosting BAT thermogenesis.

Keywords

Brown adipose tissue Capsinoids Catechins Food ingredients Obesity Recruitment SIRT1 Thermogenesis TRP channels 

References

  1. Ahn J, Lee H, Kim S, Park J, Ha T (2008) The anti-obesity effect of quercetin is mediated by the AMPK and MAPK signaling pathways. Biochem Biophys Res Commun 373:545–549Google Scholar
  2. Ahn J, Lee H, Im SW, Jung CH, Ha TY (2014) Allyl isothiocyanate ameliorates insulin resistance through the regulation of mitochondrial function. J Nutr Biochem 25:1026–1034Google Scholar
  3. Allen RW, Schwartzman E, Baker WL, Coleman CI, Phung OJ (2013) Cinnamon use in type 2 diabetes: an updated systematic review and meta-analysis. Ann Fam Med 11:452–459Google Scholar
  4. Andrade JM, Frade AC, Guimarães JB, Freitas KM, Lopes MT, Guimarães AL et al (2014) Resveratrol increases brown adipose tissue thermogenesis markers by increasing SIRT1 and energy expenditure and decreasing fat accumulation in adipose tissue of mice fed a standard diet. Eur J Nutr 53:1503–1510Google Scholar
  5. Au-Yong IT, Thorn N, Ganatra R, Perkins AC, Symonds ME (2009) Brown adipose tissue and seasonal variation in humans. Diabetes 58:2583–2587Google Scholar
  6. Bal NC, Singh S, Reis FCG, Maurya SK, Pani S, Rowland LA et al (2017) Both brown adipose tissue and skeletal muscle thermogenesis processes are activated during mild to severe cold adaptation in mice. J Biol Chem 292:16616–16625Google Scholar
  7. Bargut TCL, Souza-Mello V, Aguila MB, Mandarim-de-Lacerda CA (2017) Browning of white adipose tissue: lessons from experimental models. Horm Mol Biol Clin Investig 31(1). doi:  https://doi.org/10.1515/hmbci-2016-0051. Review
  8. Baskaran P, Krishnan V, Fettel K, Gao P, Zhu Z, Ren J et al (2017) TRPV1 activation counters diet-induced obesity through sirtuin-1 activation and PRDM-16 deacetylation in brown adipose tissue. Int J Obes (Lond) 41:739–749Google Scholar
  9. Berry DC, Noy N (2009) All-trans-retinoic acid represses obesity and insulin resistance by activating both peroxisome proliferation-activated receptor beta/delta and retinoic acid receptor. Mol Cell Biol 29:3286–3296Google Scholar
  10. Blondin DP, Labbé SM, Tingelstad HC, Noll C, Kunach M, Phoenix S et al (2014) Increased brown adipose tissue oxidative capacity in cold-acclimated humans. J Clin Endocrinol Metab 99:E438–E446Google Scholar
  11. Bonet ML, Oliver J, Pico C, Felipe F, Ribot J, Cinti S et al (2000) Opposite effects of feeding a vitamin A-deficient diet and retinoic acid treatment on brown adipose tissue uncoupling protein 1 (UCP1), UCP2 and leptin expression. J Endocrinol 166:511–517Google Scholar
  12. Boon MR, van Marken Lichtenbelt WD (2016) Brown adipose tissue: a human perspective. Handb Exp Pharmacol 233:301–319Google Scholar
  13. Cannon B, Nedergaard J (2011) Nonshivering thermogenesis and its adequate measurement in metabolic studies. J Exp Biol 214:242–253Google Scholar
  14. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824Google Scholar
  15. Chang HC, Guarente L (2014) SIRT1 and other sirtuins in metabolism. Trends Endocrinol Metab 25:138–145Google Scholar
  16. Chondronikola M, Volpi E, Børsheim E, Porter C, Saraf MK, Annamalai P et al (2016) Brown adipose tissue activation is linked to distinct systemic effects on lipid metabolism in humans. Cell Metab 23:1200–1206Google Scholar
  17. Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB et al (2009) Identification and importance of brown adipose tissue in adult humans. N Engl J Med 360:1509–1517Google Scholar
  18. Cypess AM, Weiner LS, Roberts-Toler C, Franquet Elía E, Kessler SH, Kahn PA et al (2015) Activation of human brown adipose tissue by a β3-adrenergic receptor agonist. Cell Metab 21:33–38Google Scholar
  19. Del Gobbo LC, Imamura F, Aslibekyan S, Marklund M, Virtanen JK, Wennberg M et al (2016) ω-3 polyunsaturated fatty acid biomarkers and coronary heart disease: pooling project of 19 cohort studies. JAMA Intern Med 176:1155–1166Google Scholar
  20. de Jong PR, Takahashi N, Peiris M, Bertin S, Lee J, Gareau MG et al (2015) TRPM8 on mucosal sensory nerves regulates colitogenic responses by innate immune cells via CGRP. Mucosal Immunol 8:491–504Google Scholar
  21. Dong M, Yang X, Lim S, Cao Z, Honek J, Lu H et al (2013) Cold exposure promotes atherosclerotic plaque growth and instability via UCP1-dependent lipolysis. Cell Metab 18:118–129Google Scholar
  22. Dulloo AG, Duret C, Rohrer D, Girardier L, Mensi N, Fathi M et al (1999) Efficacy of a green tea extract rich in catechin polyphenols and caffeine in increasing 24-h energy expenditure and fat oxidation in humans. Am J Clin Nutr 70:1040–1045Google Scholar
  23. Fernández-Quintela A, Milton-Laskibar I, González M, Portillo MP (2017) Antiobesity effects of resveratrol: which tissues are involved? Ann N Y Acad Sci 1403:118–131Google Scholar
  24. Ferreira MA, Silva DM, de Morais AC Jr, Mota JF, Botelho PB (2016) Therapeutic potential of green tea on risk factors for type 2 diabetes in obese adults – a review. Obes Rev 17:1316–1328Google Scholar
  25. Flajollet S, Staels B, Lefebvre P (2013) Retinoids and nuclear retinoid receptors in white and brown adipose tissues: physiopathologic aspects. Horm Mol Biol Clin Investig 14:75–86Google Scholar
  26. Fu WJ, Haynes TE, Kohli R, Hu J, Shi W, Spencer TE et al (2005) Dietary L-arginine supplementation reduces fat mass in Zucker diabetic fatty rats. J Nutr 135:714–721Google Scholar
  27. Ghandour RA, Colson C, Giroud M, Maurer S, Rekima S, Ailhaud G et al (2018) Impact of dietary ω3 polyunsaturated fatty acid supplementation on brown and brite adipocyte function. J Lipid Res 59:452–461Google Scholar
  28. Guo H, Jin D, Zhang Y, Wright W, Bazuine M, Brockman DA et al (2010) Lipocalin-2 deficiency impairs thermogenesis and potentiates diet-induced insulin resistance in mice. Diabetes 59:1376–1385Google Scholar
  29. Guo H, Foncea R, O’Byrne SM, Jiang H, Zhang Y, Deis JA et al (2016) Lipocalin 2, a regulator of retinoid homeostasis and retinoid-mediated thermogenic activation in adipose tissue. J Biol Chem 291:11216–11229Google Scholar
  30. Hanssen MJ, Hoeks J, Brans B, van der Lans AA, Schaart G, van den Driessche JJ et al (2015) Short-term cold acclimation improves insulin sensitivity in patients with type 2 diabetes mellitus. Nat Med 21:863–865Google Scholar
  31. Hibi M, Oishi S, Matsushita M, Yoneshiro T, Yamaguchi T, Usui C et al (2016) Brown adipose tissue is involved in diet-induced thermogenesis and whole-body fat utilization in healthy humans. Int J Obes (Lond) 40:1655–1661Google Scholar
  32. Ikeda K, Kang Q, Yoneshiro T, Camporez JP, Maki H, Homma M et al (2017) UCP1-independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis. Nat Med 23:1454–1465Google Scholar
  33. Ikuta T, Saito S, Tani H, Tatefuji T, Hashimoto K (2015) Resveratrol derivative-rich melinjo (Gnetum gnemon L.) seed extract improves obesity and survival of C57BL/6 mice fed a high-fat diet. Biosci Biotechnol Biochem 79:2044–2049Google Scholar
  34. Iwami M, Mahmoud FA, Shiina T, Hirayama H, Shima T, Sugita J et al (2011) Extract of grains of paradise and its active principle 6-paradol trigger thermogenesis of brown adipose tissue in rats. Auton Neurosci 161:63–67Google Scholar
  35. Jiang J, Emont MP, Jun H, Qiao X, Liao J, Kim DI et al (2017) Cinnamaldehyde induces fat cell-autonomous thermogenesis and metabolic reprogramming. Metabolism 77:58–64Google Scholar
  36. Jobgen W, Meininger CJ, Jobgen SC, Li P, Lee MJ, Smith SB et al (2009) Dietary L-arginine supplementation reduces white fat gain and enhances skeletal muscle and brown fat masses in diet-induced obese rats. J Nutr 139:230–237Google Scholar
  37. Kadowaki M, Ootani E, Sugihara N, Furuno K (2005) Inhibitory effects of catechin gallates on o-methyltranslation of protocatechuic acid in rat liver cytosolic preparations and cultured hepatocytes. Biol Pharm Bull 28:1509–1513Google Scholar
  38. Kajimura S, Seale P, Kubota K, Lunsford E, Frangioni JV, Gygi SP et al (2009) Initiation of myoblast to brown fat switch by a PRDM16-C/EBP-beta transcriptional complex. Nature 460:1154–1158Google Scholar
  39. Kawabata F, Inoue N, Masamoto Y, Matsumura S, Kimura W, Kadowaki M et al (2009) Non-pungent capsaicin analogs (capsinoids) increase metabolic rate and enhance thermogenesis via gastrointestinal TRPV1 in mice. Biosci Biotechnol Biochem 73:2690–2697Google Scholar
  40. Kawada T, Watanabe T, Takaishi T, Tanaka T, Iwai K (1986) Capsaicin-induced beta-adrenergic action on energy metabolism in rats: influence of capsaicin on oxygen consumption, the respiratory quotient, and substrate utilization. Proc Soc Exp Biol Med 183:250–256Google Scholar
  41. Kazak L, Chouchani ET, Jedrychowski MP, Erickson BK, Shinoda K, Cohen P et al (2015) A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat. Cell 163:643–655Google Scholar
  42. Kim KA, Yim JE (2015) Antioxidative activity of onion peel extract in obese women: a randomized, double-blind, placebo controlled study. J Cancer Prev 20:202–207Google Scholar
  43. Kim M, Goto T, Yu R, Uchida K, Tominaga M, Kano Y et al (2015) Fish oil intake induces UCP1 upregulation in brown and white adipose tissue via the sympathetic nervous system. Sci Rep 5:18013Google Scholar
  44. Kim J, Okla M, Erickson A, Carr T, Natarajan SK, Chung S (2016) Eicosapentaenoic acid potentiates brown ahermogenesis through FFAR4-dependent up-regulation of miR-30b and miR-378. J Biol Chem 291:20551–20562Google Scholar
  45. Kohli R, Meininger CJ, Haynes TE, Yan W, Self JT, Wu G (2004) Dietary L-arginine supplementation enhances endothelial nitric oxide synthesis in streptozotocin-induced diabetic rats. J Nutr 134:600–608Google Scholar
  46. Kurogi M, Miyashita M, Emoto Y, Kubo Y, Saitoh O (2012) Green tea polyphenol epigallocatechin gallate activates TRPA1 in an intestinal enteroendocrine cell line, STC-1. Chem Senses 37:167–177Google Scholar
  47. Kurogi M, Kawai Y, Nagatomo K, Tateyama M, Kubo Y, Saitoh O (2015) Auto-oxidation products of epigallocatechin gallate activate TRPA1 and TRPV1 in sensory neurons. Chem Senses 40:27–46Google Scholar
  48. Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F et al (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127:1109–1122Google Scholar
  49. Langeveld M, Tan CY, Soeters MR, Virtue S, Watson LP, Murgatroyd PR et al (2017) No metabolic effects of mustard allyl-isothiocyanate compared with placebo in men. Am J Clin Nutr 106:1197–1205Google Scholar
  50. Lee P, Swarbrick MM, Zhao JT, Ho KK (2011) Inducible brown adipogenesis of supraclavicular fat in adult humans. Endocrinology 152:3597–3602Google Scholar
  51. Lee P, Smith S, Linderman J, Courville AB, Brychta RJ, Dieckmann W et al (2014) Temperature-acclimated brown adipose tissue modulates insulin sensitivity in humans. Diabetes 63:3686–3698Google Scholar
  52. Lee SG, Parks JS, Kang HW (2017) Quercetin, a functional compound of onion peel, remodels white adipocytes to brown-like adipocytes. J Nutr Biochem 42:62–71Google Scholar
  53. Li Y, Wongsiriroj N, Blaner WS (2014) The multifaceted nature of retinoid transport and metabolism. Hepatobiliary Surg Nutr 3:126–139Google Scholar
  54. Lone J, Choi JH, Kim SW, Yun JW (2016) Curcumin induces brown fat-like phenotype in 3T3-L1 and primary white adipocytes. J Nutr Biochem 27:193–202Google Scholar
  55. Lorenz M, Paul F, Moobed M, Baumann G, Zimmermann BF, Stangl K et al (2014) The activity of catechol-O-methyltransferase (COMT) is not impaired by high doses of epigallocatechin-3-gallate (EGCG) in vivo. Eur J Pharmacol 740:645–651Google Scholar
  56. Ludy MJ, Moore GE, Mattes RD (2012) The effects of capsaicin and capsiate on energy balance: critical review and meta-analyses of studies in humans. Chem Senses 37:103–121Google Scholar
  57. Ma S, Yu H, Zhao Z, Luo Z, Chen J, Ni Y et al (2012) Activation of the cold-sensing TRPM8 channel triggers UCP1-dependent thermogenesis and prevents obesity. J Mol Cell Biol 4:88–96Google Scholar
  58. Matsushita M, Yoneshiro T, Aita S, Kameya T, Sugie H, Saito M (2014) Impact of brown adipose tissue on body fatness and glucose metabolism in healthy humans. Int J Obes (Lond) 38:812–817Google Scholar
  59. Michlig S, Merlini JM, Beaumont M, Ledda M, Tavenard A, Mukherjee R et al (2016) Effects of TRP channel agonist ingestion on metabolism and autonomic nervous system in a randomized clinical trial of healthy subjects. Sci Rep 6:20795Google Scholar
  60. Moon J, Do HJ, Kim OY, Shin MJ (2013) Antiobesity effects of quercetin-rich onion peel extract on the differentiation of 3T3-L1 preadipocytes and the adipogenesis in high fat-fed rats. Food Chem Toxicol 58:347–354Google Scholar
  61. Morera E, De Petrocellis L, Morera L, Moriello AS, Nalli M, Di Marzo V et al (2012) Synthesis and biological evaluation of [6]-gingerol analogues as transient receptor potential channel TRPV1 and TRPA1 modulators. Bioorg Med Chem Lett 22:1674–1677Google Scholar
  62. Moroshko I, Brennan L, O'Brien P (2011) Predictors of dropout in weight loss interventions: a systematic review of the literature. Obes Rev 12:912–934Google Scholar
  63. Murholm M, Isidor MS, Basse AL, Winther S, Sørensen C, Skovgaard-Petersen J et al (2013) Retinoic acid has different effects on UCP1 expression in mouse and human adipocytes. BMC Cell Biol 14:41Google Scholar
  64. Nakamura K (2011) Central circuitries for body temperature regulation and fever. Am J Physiol Regul Integr Comp Physiol 301:R1207–R1228Google Scholar
  65. Nirengi S, Yoneshiro T, Sugie H, Saito M, Hamaoka T (2015) Human brown adipose tissue assessed by simple, noninvasive near-infrared time-resolved spectroscopy. Obesity (Silver Spring) 23:973–980Google Scholar
  66. Nirengi S, Amagasa S, Homma T, Yoneshiro T, Matsumiya S, Kurosawa Y et al (2016a) Daily ingestion of catechin-rich beverage increases brown adipose tissue density and decreases extramyocellular lipids in healthy young women. Springerplus 5:1363Google Scholar
  67. Nirengi S, Homma T, Inoue N, Sato H, Yoneshiro T, Matsushita M et al (2016b) Assessment of human brown adipose tissue density during daily ingestion of thermogenic capsinoids using near-infrared time-resolved spectroscopy. J Biomed Opt 21:091305Google Scholar
  68. Nomura S, Ichinose T, Jinde M, Kawashima Y, Tachiyashiki K, Imaizumi K (2008) Tea catechins enhance the mRNA expression of uncoupling protein 1 in rat brown adipose tissue. J Nutr Biochemv 19:840–847Google Scholar
  69. Ohno H, Shinoda K, Ohyama K, Sharp LZ, Kajimura S (2013) EHMT1 controls brown adipose cell fate and thermogenesis through the PRDM16 complex. Nature 504:163–167Google Scholar
  70. Ohyama K, Nogusa Y, Shinoda K, Suzuki K, Bannai M, Kajimura S (2016) A synergistic antiobesity effect by a combination of capsinoids and cold temperature through promoting beige adipocyte biogenesis. Diabetes 65:1410–1423Google Scholar
  71. Okamatsu-Ogura Y, Tsubota A, Ohyama K, Nogusa Y, Saito M, Kimura K (2015) Capsinoids suppress diet-induced obesity through uncoupling protein 1-dependent mechanism in mice. J Funct Food 19:1–9Google Scholar
  72. Okla M, Kim J, Koehler K, Chung S (2017) Dietary factors promoting brown and beige fat development and thermogenesis. Adv Nutr 8:473–483Google Scholar
  73. Ono K, Tsukamoto-Yasui M, Hara-Kimura Y, Inoue N, Nogusa Y, Okabe Y et al (2011) Intragastric administration of capsiate, a transient receptor potential channel agonist, triggers thermogenic sympathetic responses. J Appl Physiol (1985) 110:789–798Google Scholar
  74. Oudart H, Groscolas R, Calgari C, Nibbelink M, Leray C, Le Maho Y et al (1997) Brown fat thermogenesis in rats fed high-fat diets enriched with n-3 polyunsaturated fatty acids. Int J Obes Relat Metab Disord 21:955–962Google Scholar
  75. Rayalam S, Yang JY, Ambati S, Della-Fera MA, Baile CA (2008) Resveratrol induces apoptosis and inhibits adipogenesis in 3T3-L1 adipocytes. Phytother Res 22:1367–1371Google Scholar
  76. Riera CE, Menozzi-Smarrito C, Affolter M, Michlig S, Munari C, Robert F et al (2009) Compounds from Sichuan and Melegueta peppers activate, covalently and non-covalently, TRPA1 and TRPV1 channels. Br J Pharmacol 157:1398–1409Google Scholar
  77. Roberts LD, Ashmore T, Kotwica AO, Murfitt SA, Fernandez BO, Feelisch M et al (2015) Inorganic nitrate promotes the browning of white adipose tissue through the nitrate–nitrite–nitric oxide pathway. Diabetes 64:471–484Google Scholar
  78. Rossato M, Granzotto M, Macchi V, Porzionato A, Petrelli L, Calcagno A et al (2014) Human white adipocytes express the cold receptor TRPM8 which activation induces UCP1 expression, mitochondrial activation and heat production. Mol Cell Endocrinol 383:137–146Google Scholar
  79. Sae-Tan S, Rogers CJ, Lambert JD (2015) Decaffeinated green tea and voluntary exercise induce gene changes related to beige adipocyte formation in high fat-fed obese mice. J Funct Foods 14:210–214Google Scholar
  80. Saito M, Okamatsu-Ogura Y, Matsushita M, Watanabe K, Yoneshiro T, Nio-Kobayashi J et al (2009) High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 58:1526–1531Google Scholar
  81. Saito M, Yoneshiro T, Matsushita M (2016) Activation and recruitment of brown adipose tissue by cold exposure and food ingredients in humans. Best Pract Res Clin Endocrinol Metab 30:537–547Google Scholar
  82. Serhan CN (2014) Pro-resolving lipid mediators are leads for resolution physiology. Nature 510:92–101Google Scholar
  83. Shinoda K, Luijten IH, Hasegawa Y, Hong H, Sonne SB, Kim M et al (2015) Genetic and functional characterization of clonally derived adult human brown adipocytes. Nat Med 21:389–394Google Scholar
  84. Sidossis LS, Porter C, Saraf MK, Børsheim E, Radhakrishnan RS, Chao T et al (2015) Browning of subcutaneous white adipose tissue in humans after severe adrenergic stress. Cell Metab 22:219–227Google Scholar
  85. Snitker S, Fujishima Y, Shen H, Ott S, Pi-Sunyer X, Furuhata Y et al (2009) Effects of novel capsinoid treatment on fatness and energy metabolism in humans: possible pharmacogenetic implications. Am J Clin Nutr 89:45–50Google Scholar
  86. Sugita J, Yoneshiro T, Hatano T, Aita S, Ikemoto T, Uchiwa H et al (2013) Grains of paradise (Aframomum melegueta) extract activates brown adipose tissue and increases whole-body energy expenditure in men. Br J Nutr 110:733–738Google Scholar
  87. Sugita J, Yoneshiro T, Sugishima Y, Ikemoto T, Uchiwa H, Suzuki I et al (2014) Daily ingestion of grains of paradise (Aframomum melegueta) extract increases whole-body energy expenditure and decreases visceral fat in humans. J Nutr Sci Vitaminol (Tokyo) 60:22–27Google Scholar
  88. Sun L, Camps SG, Goh HJ, Govindharajulu P, Schaefferkoetter JD, Townsend DW et al (2018) Capsinoids activate brown adipose tissue (BAT) with increased energy expenditure associated with subthreshold 18-fluorine fluorodeoxyglucose uptake in BAT-positive humans confirmed by positron emission tomography scan. Am J Clin Nutr 107:62–70Google Scholar
  89. Tajino K, Matsumura K, Kosada K, Shibakusa T, Inoue K, Fushiki T et al (2007) Application of menthol to the skin of whole trunk in mice induces autonomic and behavioral heat-gain responses. Am J Physiol Regul Integr Comp Physiol 293:R2128–R2135Google Scholar
  90. Takahashi M, Miyashita M, Suzuki K, Bae SR, Kim HK, Wakisaka T et al (2014) Acute ingestion of catechin–rich green tea improves postprandial glucose status and increases serum thioredoxin concentrations in postmenopausal women. Br J Nutr 112:1542–1550Google Scholar
  91. Tamura Y, Iwasaki Y, Narukawa M, Watanabe T (2012) Ingestion of cinnamaldehyde, a TRPA1 agonist, reduces visceral fats in mice fed a high-fat and high-sucrose diet. J Nutr Sci Vitaminol (Tokyo) 58:9–13Google Scholar
  92. Terada Y, Narukawa M, Watanabe T (2011) Specific hydroxy fatty acids in royal jelly activate TRPA1. J Agric Food Chem 59:2627–2635Google Scholar
  93. Thavanesan N (2011) The putative effects of green tea on body fat: an evaluation of the evidence and a review of the potential mechanisms. Br J Nutr 106:1297e309Google Scholar
  94. Tominaga M (2007) Nociception and TRP channels. Handb Exp Pharmacol 179:489–505Google Scholar
  95. Uchida K, Dezaki K, Yoneshiro T, Watanabe T, Yamazaki J, Saito M et al (2017) Involvement of thermosensitive TRP channels in energy metabolism. J Physiol Sci 67:549–560Google Scholar
  96. Valente A, Carrillo AE, Tzatzarakis MN, Vakonaki E, Tsatsakis AM, Kenny GP et al (2015) The absorption and metabolism of a single L-menthol oral versus skin administration: Effects on thermogenesis and metabolic rate. Food Chem Toxicol 86:262–273Google Scholar
  97. van der Lans AA, Hoeks J, Brans B, Vijgen GH, Visser MG, Vosselman MJ et al (2013) Cold acclimation recruits human brown fat and increases nonshivering thermogenesis. J Clin Invest 123:3395–3403Google Scholar
  98. van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND et al (2009) Cold-activated brown adipose tissue in healthy men. N Engl J Med 360:1500–1508Google Scholar
  99. Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T et al (2009) Functional brown adipose tissue in healthy adults. N Engl J Med 360:1518–1525Google Scholar
  100. von Essen G, Lindsund E, Cannon B, Nedergaard J (2017) Adaptive facultative diet-induced thermogenesis in wild-type but not in UCP1-ablated mice. Am J Physiol Endocrinol Metab 313:E515–E527Google Scholar
  101. Vosselman MJ, Brans B, van der Lans AA, Wierts R, van Baak MA, Mottaghy FM et al (2013) Brown adipose tissue activity after a high-calorie meal in humans. Am J Clin Nutr 98:57–64Google Scholar
  102. Wang S, Liang X, Yang Q, Fu X, Rogers CJ, Zhu M et al (2015) Resveratrol induces brown-like adipocyte formation in white fat through activation of AMP-activated protein kinase (AMPK) α1. Int J Obes (Lond) 39:967–976Google Scholar
  103. Westerterp-Plantenga MS (2010) Green tea catechins, caffeine and body-weight regulation. Physiol Behav 100:42–46Google Scholar
  104. Yang WS, Wang WY, Fan WY, Deng Q, Wang X (2014) Tea consumption and risk of type 2 diabetes: a meta-analysis of cohort studies. Br J Nutr 111:1329–1339Google Scholar
  105. Yoneshiro T, Saito M (2013) Transient receptor potential activated brown fat thermogenesis as a target of food ingredients for obesity management. Curr Opin Clin Nutr Metab Care 16:625–631Google Scholar
  106. Yoneshiro T, Saito M (2015) Activation and recruitment of brown adipose tissue as anti-obesity regimens in humans. Ann Med 47:133–141Google Scholar
  107. Yoneshiro T, Aita S, Matsushita M, Kameya T, Nakada K, Kawai Y et al (2011a) Brown adipose tissue, whole-body energy expenditure, and thermogenesis in healthy adult men. Obesity (Silver Spring) 19:13–16Google Scholar
  108. Yoneshiro T, Aita S, Matsushita M, Okamatsu-Ogura Y, Kameya T, Kawai Y et al (2011b) Age-related decrease in cold-activated brown adipose tissue and accumulation of body fat in healthy humans. Obesity (Silver Spring) 19:1755–1760Google Scholar
  109. Yoneshiro T, Aita S, Kawai Y, Iwanaga T, Saito M (2012) Nonpungent capsaicin analogs (capsinoids) increase energy expenditure through the activation of brown adipose tissue in humans. Am J Clin Nutr 95:845–850Google Scholar
  110. Yoneshiro T, Aita S, Matsushita M, Kayahara T, Kameya T, Kawai Y et al (2013) Recruited brown adipose tissue as an antiobesity agent in humans. J Clin Invest 123:3404–3408Google Scholar
  111. Yoneshiro T, Matsushita M, Nakae S, Kameya T, Sugie H, Tanaka S et al (2016) Brown adipose tissue is involved in the seasonal variation of cold-induced thermogenesis in humans. Am J Physiol Regul Integr Comp Physiol. doi:  https://doi.org/10.1152/ajpregu.00057.2015
  112. Yoneshiro T, Kaede R, Nagaya K, Aoyama J, Saito M, Okamatsu-Ogura Y et al (2017a) Royal jelly ameliorates diet-induced obesity and glucose intolerance by promoting brown adipose tissue thermogenesis in mice. Obes Res Clin Pract 12:127–137Google Scholar
  113. Yoneshiro T, Matsushita M, Hibi M, Tone H, Takeshita M, Yasunaga K et al (2017b) Tea catechin and caffeine activate brown adipose tissue and increase cold-induced thermogenic capacity in humans. Am J Clin Nutr 105:873–881Google Scholar
  114. Yoneshiro T, Kaede R, Nagaya K, Saito M, Aoyama J, Elfeky M et al (2018) Melinjo (Gnetum gnemon L.) seed extract induces uncoupling protein 1 expression in brown fat and protects mice against diet-induced obesity, inflammation, and insulin resistance. Nutr Res 58:17–25Google Scholar
  115. Yuan X, Wei G, You Y, Huang Y, Lee HJ, Dong M et al (2017) Rutin ameliorates obesity through brown fat activation. FASEB J 31:333–345Google Scholar
  116. Zuo J, Zhao D, Yu N, Fang X, Mu Q, Ma Y et al (2017) Cinnamaldehyde ameliorates diet-induced obesity in mice by inducing browning of white adipose tissue. Cell Physiol Biochem 42:1514–1525Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Takeshi Yoneshiro
    • 1
  • Mami Matsushita
    • 2
  • Masayuki Saito
    • 3
  1. 1.Diabetes CenterUniversity of California, San FranciscoSan FranciscoUSA
  2. 2.Department of NutritionTenshi CollegeSapporoJapan
  3. 3.Department of Biomedical Sciences, Graduate School of Veterinary MedicineHokkaido UniversitySapporoJapan

Personalised recommendations