Advertisement

Fatty Acid Metabolites as Novel Regulators of Non-shivering Thermogenesis

  • Stefanie F. MaurerEmail author
  • Sebastian Dieckmann
  • Karin Kleigrewe
  • Cécilia Colson
  • Ez-Zoubir Amri
  • Martin Klingenspor
Chapter
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 251)

Abstract

Fatty acids are essential contributors to adipocyte-based non-shivering thermogenesis by acting as activators of uncoupling protein 1 and serving as fuel for mitochondrial heat production. Novel evidence suggests a contribution to this thermogenic mechanism by their conversion to bioactive compounds. Mammalian cells produce a plethora of oxylipins and endocannabinoids, some of which have been identified to affect the abundance or thermogenic activity of brown and brite adipocytes. These effectors are produced locally or at distant sites and signal toward thermogenic adipocytes via a direct interaction with these cells or indirectly via secondary mechanisms. These interactions are evoked by the activation of receptor-mediated pathways. The endogenous production of these compounds is prone to modulation by the dietary intake of the respective precursor fatty acids. The effect of nutritional interventions on uncoupling protein 1-derived thermogenesis may thus at least in part be conferred by the production of a supportive oxylipin and endocannabinoid profile. The manipulation of this system in future studies will help to elucidate the physiological potential of these compounds as novel, endogenous regulators of non-shivering thermogenesis.

Keywords

Brite adipocytes Brown adipocytes Endocannabinoids Oxylipins PUFAs Thermogenesis Ucp1 ω-3 ω-6 

Notes

Acknowledgments

This work was supported by French Agence Nationale de la Recherche and Deutsche Forschungsgemeinschaft (ANR/DFG-15-CE14-0033 “Nutribrite”). We thank Tobias Fromme for proofreading the manuscript.

References

  1. Adler DH, Cogan JD, Phillips JA 3rd, Schnetz-Boutaud N, Milne GL, Iverson T, Stein JA, Brenner DA, Morrow JD, Boutaud O, Oates JA (2008) Inherited human cPLA(2alpha) deficiency is associated with impaired eicosanoid biosynthesis, small intestinal ulceration, and platelet dysfunction. J Clin Invest 118(6):2121–2131.  https://doi.org/10.1172/JCI30473CrossRefPubMedPubMedCentralGoogle Scholar
  2. Aiken JW, Shebuski RJ (1980) Comparison in anesthetized dogs of the anti-aggregatory and hemodynamic effects of prostacyclin and a chemically stable prostacyclin analog, 6a-carba-PGI2 (carbacyclin). Prostaglandins 19(4):629–643CrossRefGoogle Scholar
  3. Annamalai D, Clipstone NA (2014) Prostaglandin F2alpha inhibits adipogenesis via an autocrine-mediated interleukin-11/glycoprotein 130/STAT1-dependent signaling cascade. J Cell Biochem 115(7):1308–1321.  https://doi.org/10.1002/jcb.24785CrossRefPubMedGoogle Scholar
  4. Babaei R, Bayindir-Buchhalter I, Meln I, Vegiopoulos A (2017) Immuno-magnetic isolation and thermogenic differentiation of white adipose tissue progenitor cells. Methods Mol Biol 1566:37–48.  https://doi.org/10.1007/978-1-4939-6820-6_5CrossRefPubMedGoogle Scholar
  5. Baboota RK, Singh DP, Sarma SM, Kaur J, Sandhir R, Boparai RK, Kondepudi KK, Bishnoi M (2014) Capsaicin induces “brite” phenotype in differentiating 3T3-L1 preadipocytes. PLoS One 9(7):e103093.  https://doi.org/10.1371/journal.pone.0103093CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bajzer M, Olivieri M, Haas MK, Pfluger PT, Magrisso IJ, Foster MT, Tschop MH, Krawczewski-Carhuatanta KA, Cota D, Obici S (2011) Cannabinoid receptor 1 (CB1) antagonism enhances glucose utilisation and activates brown adipose tissue in diet-induced obese mice. Diabetologia 54(12):3121–3131.  https://doi.org/10.1007/s00125-011-2302-6CrossRefPubMedGoogle Scholar
  7. Balvers MG, Verhoeckx KC, Bijlsma S, Rubingh CM, Meijerink J, Wortelboer HM, Witkamp RF (2012) Fish oil and inflammatory status alter the n-3 to n-6 balance of the endocannabinoid and oxylipin metabolomes in mouse plasma and tissues. Metabolomics 8(6):1130–1147.  https://doi.org/10.1007/s11306-012-0421-9CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bargut TC, Silva-e-Silva AC, Souza-Mello V, Mandarim-de-Lacerda CA, Aguila MB (2016a) Mice fed fish oil diet and upregulation of brown adipose tissue thermogenic markers. Eur J Nutr 55(1):159–169.  https://doi.org/10.1007/s00394-015-0834-0CrossRefPubMedGoogle Scholar
  9. Bargut TC, Souza-Mello V, Mandarim-de-Lacerda CA, Aguila MB (2016b) Fish oil diet modulates epididymal and inguinal adipocyte metabolism in mice. Food Funct 7(3):1468–1476.  https://doi.org/10.1039/c5fo00909jCrossRefPubMedGoogle Scholar
  10. Barquissau V, Ghandour RA, Ailhaud G, Klingenspor M, Langin D, Amri EZ, Pisani DF (2017) Control of adipogenesis by oxylipins, GPCRs and PPARs. Biochimie 136:3–11.  https://doi.org/10.1016/j.biochi.2016.12.012CrossRefPubMedGoogle Scholar
  11. Bayindir I, Babaeikelishomi R, Kocanova S, Sousa IS, Lerch S, Hardt O, Wild S, Bosio A, Bystricky K, Herzig S, Vegiopoulos A (2015) Transcriptional pathways in cPGI2-induced adipocyte progenitor activation for browning. Front Endocrinol (Lausanne) 6:129.  https://doi.org/10.3389/fendo.2015.00129CrossRefGoogle Scholar
  12. Betz MJ, Enerback S (2018) Targeting thermogenesis in brown fat and muscle to treat obesity and metabolic disease. Nat Rev Endocrinol 14(2):77–87.  https://doi.org/10.1038/nrendo.2017.132CrossRefPubMedGoogle Scholar
  13. Bilgin M, Bindila L, Graessler J, Shevchenko A (2015) Quantitative profiling of endocannabinoids in lipoproteins by LC-MS/MS. Anal Bioanal Chem 407(17):5125–5131.  https://doi.org/10.1007/s00216-015-8559-8CrossRefPubMedGoogle Scholar
  14. Bojesen IN, Hansen HS (2003) Binding of anandamide to bovine serum albumin. J Lipid Res 44(9):1790–1794.  https://doi.org/10.1194/jlr.M300170-JLR200CrossRefPubMedGoogle Scholar
  15. Boon MR, Kooijman S, van Dam AD, Pelgrom LR, Berbee JF, Visseren CA, van Aggele RC, van den Hoek AM, Sips HC, Lombes M, Havekes LM, Tamsma JT, Guigas B, Meijer OC, Jukema JW, Rensen PC (2014) Peripheral cannabinoid 1 receptor blockade activates brown adipose tissue and diminishes dyslipidemia and obesity. FASEB J 28(12):5361–5375.  https://doi.org/10.1096/fj.13-247643CrossRefPubMedGoogle Scholar
  16. Borglum JD, Pedersen SB, Ailhaud G, Negrel R, Richelsen B (1999) Differential expression of prostaglandin receptor mRNAs during adipose cell differentiation. Prostaglandins Other Lipid Mediat 57(5–6):305–317CrossRefGoogle Scholar
  17. Bouaboula M, Hilairet S, Marchand J, Fajas L, Le Fur G, Casellas P (2005) Anandamide induced PPARgamma transcriptional activation and 3T3-L1 preadipocyte differentiation. Eur J Pharmacol 517(3):174–181.  https://doi.org/10.1016/j.ejphar.2005.05.032CrossRefPubMedGoogle Scholar
  18. Brailoiu GC, Oprea TI, Zhao P, Abood ME, Brailoiu E (2011) Intracellular cannabinoid type 1 (CB1) receptors are activated by anandamide. J Biol Chem 286(33):29166–29174.  https://doi.org/10.1074/jbc.M110.217463CrossRefPubMedPubMedCentralGoogle Scholar
  19. Brailoiu GC, Deliu E, Marcu J, Hoffman NE, Console-Bram L, Zhao P, Madesh M, Abood ME, Brailoiu E (2014) Differential activation of intracellular versus plasmalemmal CB2 cannabinoid receptors. Biochemistry 53(30):4990–4999.  https://doi.org/10.1021/bi500632aCrossRefPubMedPubMedCentralGoogle Scholar
  20. Cao W, Medvedev AV, Daniel KW, Collins S (2001) Beta-adrenergic activation of p38 MAP kinase in adipocytes: cAMP induction of the uncoupling protein 1 (UCP1) gene requires p38 MAP kinase. J Biol Chem 276(29):27077–27082.  https://doi.org/10.1074/jbc.M101049200CrossRefPubMedGoogle Scholar
  21. Carmona MC, Louche K, Lefebvre B, Pilon A, Hennuyer N, Audinot-Bouchez V, Fievet C, Torpier G, Formstecher P, Renard P, Lefebvre P, Dacquet C, Staels B, Casteilla L, Penicaud L, Consortium of the French Ministry of Research Technology (2007) S 26948: a new specific peroxisome proliferator activated receptor gamma modulator with potent antidiabetes and antiatherogenic effects. Diabetes 56(11):2797–2808.  https://doi.org/10.2337/db06-1734CrossRefPubMedGoogle Scholar
  22. Catalioto RM, Gaillard D, Maclouf J, Ailhaud G, Negrel R (1991) Autocrine control of adipose cell differentiation by prostacyclin and PGF2 alpha. Biochim Biophys Acta 1091(3):364–369CrossRefGoogle Scholar
  23. Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, Kuo FC, Palmer EL, Tseng YH, Doria A, Kolodny GM, Kahn CR (2009) Identification and importance of brown adipose tissue in adult humans. N Engl J Med 360(15):1509–1517.  https://doi.org/10.1056/NEJMoa0810780CrossRefPubMedPubMedCentralGoogle Scholar
  24. Dichlberger A, Schlager S, Maaninka K, Schneider WJ, Kovanen PT (2014) Adipose triglyceride lipase regulates eicosanoid production in activated human mast cells. J Lipid Res 55(12):2471–2478.  https://doi.org/10.1194/jlr.M048553CrossRefPubMedPubMedCentralGoogle Scholar
  25. Dixon RA, Diehl RE, Opas E, Rands E, Vickers PJ, Evans JF, Gillard JW, Miller DK (1990) Requirement of a 5-lipoxygenase-activating protein for leukotriene synthesis. Nature 343(6255):282–284.  https://doi.org/10.1038/343282a0CrossRefPubMedGoogle Scholar
  26. Dumlao DS, Buczynski MW, Norris PC, Harkewicz R, Dennis EA (2011) High-throughput lipidomic analysis of fatty acid derived eicosanoids and N-acylethanolamines. Biochim Biophys Acta 1811(11):724–736.  https://doi.org/10.1016/j.bbalip.2011.06.005CrossRefPubMedPubMedCentralGoogle Scholar
  27. Elabd C, Chiellini C, Carmona M, Galitzky J, Cochet O, Petersen R, Penicaud L, Kristiansen K, Bouloumie A, Casteilla L, Dani C, Ailhaud G, Amri EZ (2009) Human multipotent adipose-derived stem cells differentiate into functional brown adipocytes. Stem Cells 27(11):2753–2760.  https://doi.org/10.1002/stem.200CrossRefPubMedGoogle Scholar
  28. Elias I, Ferre T, Vila L, Munoz S, Casellas A, Garcia M, Molas M, Agudo J, Roca C, Ruberte J, Bosch F, Franckhauser S (2016) ALOX5AP overexpression in adipose tissue leads to LXA4 production and protection against diet-induced obesity and insulin resistance. Diabetes 65(8):2139–2150.  https://doi.org/10.2337/db16-0040CrossRefPubMedGoogle Scholar
  29. Enerback S, Jacobsson A, Simpson EM, Guerra C, Yamashita H, Harper ME, Kozak LP (1997) Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 387(6628):90–94.  https://doi.org/10.1038/387090a0CrossRefPubMedGoogle Scholar
  30. Fahy E, Sud M, Cotter D, Subramaniam S (2007) LIPID MAPS online tools for lipid research. Nucleic Acids Res 35(Web Server):W606–W612.  https://doi.org/10.1093/nar/gkm324CrossRefPubMedPubMedCentralGoogle Scholar
  31. Fischer K, Ruiz HH, Jhun K, Finan B, Oberlin DJ, van der Heide V, Kalinovich AV, Petrovic N, Wolf Y, Clemmensen C, Shin AC, Divanovic S, Brombacher F, Glasmacher E, Keipert S, Jastroch M, Nagler J, Schramm KW, Medrikova D, Collden G, Woods SC, Herzig S, Homann D, Jung S, Nedergaard J, Cannon B, Tschop MH, Muller TD, Buettner C (2017) Alternatively activated macrophages do not synthesize catecholamines or contribute to adipose tissue adaptive thermogenesis. Nat Med 23(5):623–630.  https://doi.org/10.1038/nm.4316CrossRefPubMedPubMedCentralGoogle Scholar
  32. Fleckenstein-Elsen M, Dinnies D, Jelenik T, Roden M, Romacho T, Eckel J (2016) Eicosapentaenoic acid and arachidonic acid differentially regulate adipogenesis, acquisition of a brite phenotype and mitochondrial function in primary human adipocytes. Mol Nutr Food Res 60(9):2065–2075.  https://doi.org/10.1002/mnfr.201500892CrossRefPubMedGoogle Scholar
  33. Fonseca BM, Costa MA, Almada M, Correia-da-Silva G, Teixeira NA (2013) Endogenous cannabinoids revisited: a biochemistry perspective. Prostaglandins Other Lipid Mediat 102–103:13–30.  https://doi.org/10.1016/j.prostaglandins.2013.02.002CrossRefPubMedGoogle Scholar
  34. Foster J, Mauger AR, Chrismas BC, Thomasson K, Taylor L (2015) Is prostaglandin E2 (PGE2) involved in the thermogenic response to environmental cooling in healthy humans? Med Hypotheses 85(5):607–611.  https://doi.org/10.1016/j.mehy.2015.07.022CrossRefPubMedGoogle Scholar
  35. Fowler CJ (2013) Transport of endocannabinoids across the plasma membrane and within the cell. FEBS J 280(9):1895–1904.  https://doi.org/10.1111/febs.12212CrossRefPubMedGoogle Scholar
  36. Fu J, Gaetani S, Oveisi F, Lo Verme J, Serrano A, Rodriguez De Fonseca F, Rosengarth A, Luecke H, Di Giacomo B, Tarzia G, Piomelli D (2003) Oleylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-alpha. Nature 425(6953):90–93.  https://doi.org/10.1038/nature01921CrossRefPubMedGoogle Scholar
  37. Gabbs M, Leng S, Devassy JG, Monirujjaman M, Aukema HM (2015) Advances in our understanding of oxylipins derived from dietary PUFAs. Adv Nutr 6(5):513–540.  https://doi.org/10.3945/an.114.007732CrossRefPubMedPubMedCentralGoogle Scholar
  38. Garcia-Alonso V, Claria J (2014) Prostaglandin E2 signals white-to-brown adipogenic differentiation. Adipocytes 3(4):290–296.  https://doi.org/10.4161/adip.29993CrossRefGoogle Scholar
  39. Garcia-Alonso V, Lopez-Vicario C, Titos E, Moran-Salvador E, Gonzalez-Periz A, Rius B, Parrizas M, Werz O, Arroyo V, Claria J (2013) Coordinate functional regulation between microsomal prostaglandin E synthase-1 (mPGES-1) and peroxisome proliferator-activated receptor gamma (PPARgamma) in the conversion of white-to-brown adipocytes. J Biol Chem 288(39):28230–28242.  https://doi.org/10.1074/jbc.M113.468603CrossRefPubMedPubMedCentralGoogle Scholar
  40. Garcia-Alonso V, Titos E, Alcaraz-Quiles J, Rius B, Lopategi A, Lopez-Vicario C, Jakobsson PJ, Delgado S, Lozano J, Claria J (2016) Prostaglandin E2 exerts multiple regulatory actions on human obese adipose tissue remodeling, inflammation, adaptive thermogenesis and lipolysis. PLoS One 11(4):e0153751.  https://doi.org/10.1371/journal.pone.0153751CrossRefPubMedPubMedCentralGoogle Scholar
  41. Geurts L, Everard A, Van Hul M, Essaghir A, Duparc T, Matamoros S, Plovier H, Castel J, Denis RG, Bergiers M, Druart C, Alhouayek M, Delzenne NM, Muccioli GG, Demoulin JB, Luquet S, Cani PD (2015) Adipose tissue NAPE-PLD controls fat mass development by altering the browning process and gut microbiota. Nat Commun 6:6495.  https://doi.org/10.1038/ncomms7495CrossRefPubMedPubMedCentralGoogle Scholar
  42. Ghandour RA, Giroud M, Vegiopoulos A, Herzig S, Ailhaud G, Amri EZ, Pisani DF (2016) IP-receptor and PPARs trigger the conversion of human white to brite adipocyte induced by carbaprostacyclin. Biochim Biophys Acta 1861(4):285–293.  https://doi.org/10.1016/j.bbalip.2016.01.007CrossRefPubMedGoogle Scholar
  43. Ghandour RA, Colson C, Giroud M, Maurer S, Rekima S, Ailhaud GP, Klingenspor M, Amri EZ, Pisani DF (2018) Impact of dietary omega3 polyunsaturated fatty acid supplementation on brown and brite adipocyte function. J Lipid Res.  https://doi.org/10.1194/jlr.M081091
  44. Giordano A, Frontini A, Cinti S (2016) Convertible visceral fat as a therapeutic target to curb obesity. Nat Rev Drug Discov 15(6):405–424.  https://doi.org/10.1038/nrd.2016.31CrossRefPubMedGoogle Scholar
  45. Goto T, Kim YI, Furuzono T, Takahashi N, Yamakuni K, Yang HE, Li Y, Ohue R, Nomura W, Sugawara T, Yu R, Kitamura N, Park SB, Kishino S, Ogawa J, Kawada T (2015) 10-Oxo-12(Z)-octadecenoic acid, a linoleic acid metabolite produced by gut lactic acid bacteria, potently activates PPARgamma and stimulates adipogenesis. Biochem Biophys Res Commun 459(4):597–603.  https://doi.org/10.1016/j.bbrc.2015.02.154CrossRefPubMedGoogle Scholar
  46. Harms M, Seale P (2013) Brown and beige fat: development, function and therapeutic potential. Nat Med 19(10):1252–1263.  https://doi.org/10.1038/nm.3361CrossRefPubMedGoogle Scholar
  47. Howlett AC, Barth F, Bonner TI, Cabral G, Casellas P, Devane WA, Felder CC, Herkenham M, Mackie K, Martin BR, Mechoulam R, Pertwee RG (2002) International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol Rev 54(2):161–202CrossRefGoogle Scholar
  48. Hu J, Kyrou I, Tan BK, Dimitriadis GK, Ramanjaneya M, Tripathi G, Patel V, James S, Kawan M, Chen J, Randeva HS (2016) Short-chain fatty acid acetate stimulates Adipogenesis and mitochondrial biogenesis via GPR43 in Brown adipocytes. Endocrinology 157(5):1881–1894.  https://doi.org/10.1210/en.2015-1944CrossRefPubMedGoogle Scholar
  49. Huang JT, Welch JS, Ricote M, Binder CJ, Willson TM, Kelly C, Witztum JL, Funk CD, Conrad D, Glass CK (1999) Interleukin-4-dependent production of PPAR-gamma ligands in macrophages by 12/15-lipoxygenase. Nature 400(6742):378–382.  https://doi.org/10.1038/22572CrossRefPubMedGoogle Scholar
  50. Jbilo O, Ravinet-Trillou C, Arnone M, Buisson I, Bribes E, Peleraux A, Penarier G, Soubrie P, Le Fur G, Galiegue S, Casellas P (2005) The CB1 receptor antagonist rimonabant reverses the diet-induced obesity phenotype through the regulation of lipolysis and energy balance. FASEB J 19(11):1567–1569.  https://doi.org/10.1096/fj.04-3177fjeCrossRefPubMedGoogle Scholar
  51. Jung KM, Clapper JR, Fu J, D’Agostino G, Guijarro A, Thongkham D, Avanesian A, Astarita G, DiPatrizio NV, Frontini A, Cinti S, Diano S, Piomelli D (2012) 2-Arachidonoylglycerol signaling in forebrain regulates systemic energy metabolism. Cell Metab 15(3):299–310.  https://doi.org/10.1016/j.cmet.2012.01.021CrossRefPubMedPubMedCentralGoogle Scholar
  52. Kaneko Y, Szallasi A (2014) Transient receptor potential (TRP) channels: a clinical perspective. Br J Pharmacol 171(10):2474–2507.  https://doi.org/10.1111/bph.12414CrossRefPubMedPubMedCentralGoogle Scholar
  53. Kida R, Yoshida H, Murakami M, Shirai M, Hashimoto O, Kawada T, Matsui T, Funaba M (2016) Direct action of capsaicin in brown adipogenesis and activation of brown adipocytes. Cell Biochem Funct 34(1):34–41.  https://doi.org/10.1002/cbf.3162CrossRefPubMedGoogle Scholar
  54. Kim M, Goto T, Yu R, Uchida K, Tominaga M, Kano Y, Takahashi N, Kawada T (2015) Fish oil intake induces UCP1 upregulation in brown and white adipose tissue via the sympathetic nervous system. Sci Rep 5:18013.  https://doi.org/10.1038/srep18013CrossRefPubMedPubMedCentralGoogle Scholar
  55. Kim J, Okla M, Erickson A, Carr T, Natarajan SK, Chung S (2016) Eicosapentaenoic acid potentiates Brown thermogenesis through FFAR4-dependent up-regulation of miR-30b and miR-378. J Biol Chem 291(39):20551–20562.  https://doi.org/10.1074/jbc.M116.721480CrossRefPubMedPubMedCentralGoogle Scholar
  56. Kim M, Furuzono T, Yamakuni K, Li Y, Kim YI, Takahashi H, Ohue-Kitano R, Jheng HF, Takahashi N, Kano Y, Yu R, Kishino S, Ogawa J, Uchida K, Yamazaki J, Tominaga M, Kawada T, Goto T (2017) 10-Oxo-12(Z)-octadecenoic acid, a linoleic acid metabolite produced by gut lactic acid bacteria, enhances energy metabolism by activation of TRPV1. FASEB J 31(11):5036–5048.  https://doi.org/10.1096/fj.201700151RCrossRefPubMedGoogle Scholar
  57. Kirkham TC, Williams CM, Fezza F, Di Marzo V (2002) Endocannabinoid levels in rat limbic forebrain and hypothalamus in relation to fasting, feeding and satiation: stimulation of eating by 2-arachidonoyl glycerol. Br J Pharmacol 136(4):550–557.  https://doi.org/10.1038/sj.bjp.0704767CrossRefPubMedPubMedCentralGoogle Scholar
  58. Kishino S, Takeuchi M, Park SB, Hirata A, Kitamura N, Kunisawa J, Kiyono H, Iwamoto R, Isobe Y, Arita M, Arai H, Ueda K, Shima J, Takahashi S, Yokozeki K, Shimizu S, Ogawa J (2013) Polyunsaturated fatty acid saturation by gut lactic acid bacteria affecting host lipid composition. Proc Natl Acad Sci U S A 110(44):17808–17813.  https://doi.org/10.1073/pnas.1312937110CrossRefPubMedPubMedCentralGoogle Scholar
  59. Konkel A, Schunck WH (2011) Role of cytochrome P450 enzymes in the bioactivation of polyunsaturated fatty acids. Biochim Biophys Acta 1814(1):210–222.  https://doi.org/10.1016/j.bbapap.2010.09.009CrossRefPubMedGoogle Scholar
  60. Krott LM, Piscitelli F, Heine M, Borrino S, Scheja L, Silvestri C, Heeren J, Di Marzo V (2016) Endocannabinoid regulation in white and brown adipose tissue following thermogenic activation. J Lipid Res 57(3):464–473.  https://doi.org/10.1194/jlr.M065227CrossRefPubMedPubMedCentralGoogle Scholar
  61. Kuhn H, Banthiya S, van Leyen K (2015) Mammalian lipoxygenases and their biological relevance. Biochim Biophys Acta 1851(4):308–330.  https://doi.org/10.1016/j.bbalip.2014.10.002CrossRefPubMedGoogle Scholar
  62. Lazarus M, Yoshida K, Coppari R, Bass CE, Mochizuki T, Lowell BB, Saper CB (2007) EP3 prostaglandin receptors in the median preoptic nucleus are critical for fever responses. Nat Neurosci 10(9):1131–1133.  https://doi.org/10.1038/nn1949CrossRefPubMedGoogle Scholar
  63. Le Faouder P, Baillif V, Spreadbury I, Motta JP, Rousset P, Chene G, Guigne C, Terce F, Vanner S, Vergnolle N, Bertrand-Michel J, Dubourdeau M, Cenac N (2013) LC-MS/MS method for rapid and concomitant quantification of pro-inflammatory and pro-resolving polyunsaturated fatty acid metabolites. J Chromatogr B Analyt Technol Biomed Life Sci 932:123–133.  https://doi.org/10.1016/j.jchromb.2013.06.014CrossRefPubMedGoogle Scholar
  64. Lecka-Czernik B, Moerman EJ, Grant DF, Lehmann JM, Manolagas SC, Jilka RL (2002) Divergent effects of selective peroxisome proliferator-activated receptor-gamma 2 ligands on adipocyte versus osteoblast differentiation. Endocrinology 143(6):2376–2384.  https://doi.org/10.1210/endo.143.6.8834CrossRefPubMedGoogle Scholar
  65. Lee YH, Petkova AP, Mottillo EP, Granneman JG (2012) In vivo identification of bipotential adipocyte progenitors recruited by beta3-adrenoceptor activation and high-fat feeding. Cell Metab 15(4):480–491.  https://doi.org/10.1016/j.cmet.2012.03.009CrossRefPubMedPubMedCentralGoogle Scholar
  66. Lee YH, Petkova AP, Granneman JG (2013) Identification of an adipogenic niche for adipose tissue remodeling and restoration. Cell Metab 18(3):355–367.  https://doi.org/10.1016/j.cmet.2013.08.003CrossRefPubMedPubMedCentralGoogle Scholar
  67. Lee YH, Thacker RI, Hall BE, Kong R, Granneman JG (2014) Exploring the activated adipogenic niche: interactions of macrophages and adipocyte progenitors. Cell Cycle 13(2):184–190.  https://doi.org/10.4161/cc.27647CrossRefPubMedPubMedCentralGoogle Scholar
  68. Lee YH, Kim SN, Kwon HJ, Maddipati KR, Granneman JG (2016) Adipogenic role of alternatively activated macrophages in beta-adrenergic remodeling of white adipose tissue. Am J Physiol Regul Integr Comp Physiol 310(1):R55–R65.  https://doi.org/10.1152/ajpregu.00355.2015CrossRefPubMedGoogle Scholar
  69. Li Y, Fromme T, Schweizer S, Schottl T, Klingenspor M (2014) Taking control over intracellular fatty acid levels is essential for the analysis of thermogenic function in cultured primary brown and brite/beige adipocytes. EMBO Rep 15(10):1069–1076.  https://doi.org/10.15252/embr.201438775CrossRefPubMedPubMedCentralGoogle Scholar
  70. Liu L, Clipstone NA (2007) Prostaglandin F2alpha inhibits adipocyte differentiation via a G alpha q-calcium-calcineurin-dependent signaling pathway. J Cell Biochem 100(1):161–173.  https://doi.org/10.1002/jcb.21044CrossRefPubMedGoogle Scholar
  71. Lynes MD, Leiria LO, Lundh M, Bartelt A, Shamsi F, Huang TL, Takahashi H, Hirshman MF, Schlein C, Lee A, Baer LA, May FJ, Gao F, Narain NR, Chen EY, Kiebish MA, Cypess AM, Bluher M, Goodyear LJ, Hotamisligil GS, Stanford KI, Tseng YH (2017) The cold-induced lipokine 12,13-diHOME promotes fatty acid transport into brown adipose tissue. Nat Med 23(5):631–637.  https://doi.org/10.1038/nm.4297CrossRefPubMedPubMedCentralGoogle Scholar
  72. Maclouf J, Kindahl H, Granstrom E, Samuelsson B (1980) Interactions of prostaglandin H2 and thromboxane A2 with human serum albumin. Eur J Biochem 109(2):561–566CrossRefGoogle Scholar
  73. Madsen L, Pedersen LM, Lillefosse HH, Fjaere E, Bronstad I, Hao Q, Petersen RK, Hallenborg P, Ma T, De Matteis R, Araujo P, Mercader J, Bonet ML, Hansen JB, Cannon B, Nedergaard J, Wang J, Cinti S, Voshol P, Doskeland SO, Kristiansen K (2010) UCP1 induction during recruitment of brown adipocytes in white adipose tissue is dependent on cyclooxygenase activity. PLoS One 5(6):e11391.  https://doi.org/10.1371/journal.pone.0011391CrossRefPubMedPubMedCentralGoogle Scholar
  74. van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, Schrauwen P, Teule GJ (2009) Cold-activated brown adipose tissue in healthy men. N Engl J Med 360(15):1500–1508.  https://doi.org/10.1056/NEJMoa0808718CrossRefPubMedPubMedCentralGoogle Scholar
  75. Masoodi M, Eiden M, Koulman A, Spaner D, Volmer DA (2010) Comprehensive lipidomics analysis of bioactive lipids in complex regulatory networks. Anal Chem 82(19):8176–8185.  https://doi.org/10.1021/ac1015563CrossRefGoogle Scholar
  76. Massiera F, Saint-Marc P, Seydoux J, Murata T, Kobayashi T, Narumiya S, Guesnet P, Amri EZ, Negrel R, Ailhaud G (2003) Arachidonic acid and prostacyclin signaling promote adipose tissue development: a human health concern? J Lipid Res 44(2):271–279.  https://doi.org/10.1194/jlr.M200346-JLR200CrossRefPubMedGoogle Scholar
  77. Matias I, Di Marzo V (2007) Endocannabinoids and the control of energy balance. Trends Endocrinol Metab 18(1):27–37.  https://doi.org/10.1016/j.tem.2006.11.006CrossRefPubMedGoogle Scholar
  78. Mesaros C, Blair IA (2012) Targeted chiral analysis of bioactive arachidonic acid metabolites using liquid-chromatography-mass spectrometry. Meta 2(2):337–365.  https://doi.org/10.3390/metabo2020337CrossRefGoogle Scholar
  79. Miller DK, Gillard JW, Vickers PJ, Sadowski S, Leveille C, Mancini JA, Charleson P, Dixon RA, Ford-Hutchinson AW, Fortin R et al (1990) Identification and isolation of a membrane protein necessary for leukotriene production. Nature 343(6255):278–281.  https://doi.org/10.1038/343278a0CrossRefPubMedGoogle Scholar
  80. Moran JH, Weise R, Schnellmann RG, Freeman JP, Grant DF (1997) Cytotoxicity of linoleic acid diols to renal proximal tubular cells. Toxicol Appl Pharmacol 146(1):53–59.  https://doi.org/10.1006/taap.1997.8197CrossRefPubMedGoogle Scholar
  81. Moran-Ramos S, Lopez-Contreras BE, Canizales-Quinteros S (2017) Gut microbiota in obesity and metabolic abnormalities: a matter of composition or functionality? Arch Med Res.  https://doi.org/10.1016/j.arcmed.2017.11.003
  82. Morrison SF (2016) Central control of body temperature. F1000Res 5. doi: https://doi.org/10.12688/f1000research.7958.1
  83. Morrison SF, Madden CJ (2014) Central nervous system regulation of brown adipose tissue. Compr Physiol 4(4):1677–1713.  https://doi.org/10.1002/cphy.c140013CrossRefPubMedPubMedCentralGoogle Scholar
  84. Murphy RC, Barkley RM, Zemski Berry K, Hankin J, Harrison K, Johnson C, Krank J, McAnoy A, Uhlson C, Zarini S (2005) Electrospray ionization and tandem mass spectrometry of eicosanoids. Anal Biochem 346(1):1–42.  https://doi.org/10.1016/j.ab.2005.04.042CrossRefPubMedGoogle Scholar
  85. Nagai M, Tuchiya K, Kojima H (1996) Prostaglandin E2 increases the calcium concentration in rat brown adipocytes and their consumption of oxygen. Prostaglandins 51(6):377–386CrossRefGoogle Scholar
  86. Nagy L, Tontonoz P, Alvarez JG, Chen H, Evans RM (1998) Oxidized LDL regulates macrophage gene expression through ligand activation of PPARgamma. Cell 93(2):229–240CrossRefGoogle Scholar
  87. Nakamura K, Matsumura K, Kaneko T, Kobayashi S, Katoh H, Negishi M (2002) The rostral raphe pallidus nucleus mediates pyrogenic transmission from the preoptic area. J Neurosci 22(11):4600–4610CrossRefGoogle Scholar
  88. Negrel R, Gaillard D, Ailhaud G (1989) Prostacyclin as a potent effector of adipose-cell differentiation. Biochem J 257(2):399–405CrossRefGoogle Scholar
  89. Nelson DR, Zeldin DC, Hoffman SM, Maltais LJ, Wain HM, Nebert DW (2004) Comparison of cytochrome P450 (CYP) genes from the mouse and human genomes, including nomenclature recommendations for genes, pseudogenes and alternative-splice variants. Pharmacogenetics 14(1):1–18CrossRefGoogle Scholar
  90. Nguyen KD, Qiu Y, Cui X, Goh YP, Mwangi J, David T, Mukundan L, Brombacher F, Locksley RM, Chawla A (2011) Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature 480(7375):104–108.  https://doi.org/10.1038/nature10653CrossRefPubMedPubMedCentralGoogle Scholar
  91. Obinata H, Hattori T, Nakane S, Tatei K, Izumi T (2005) Identification of 9-hydroxyoctadecadienoic acid and other oxidized free fatty acids as ligands of the G protein-coupled receptor G2A. J Biol Chem 280(49):40676–40683.  https://doi.org/10.1074/jbc.M507787200CrossRefPubMedGoogle Scholar
  92. Okla M, Kim J, Koehler K, Chung S (2017) Dietary factors promoting brown and beige fat development and thermogenesis. Adv Nutr 8(3):473–483.  https://doi.org/10.3945/an.116.014332CrossRefPubMedPubMedCentralGoogle Scholar
  93. Ostermann AI, Schebb NH (2017) Effects of omega-3 fatty acid supplementation on the pattern of oxylipins: a short review about the modulation of hydroxy-, dihydroxy-, and epoxy-fatty acids. Food Funct 8(7):2355–2367.  https://doi.org/10.1039/c7fo00403fCrossRefPubMedGoogle Scholar
  94. Ostermann AI, Waindok P, Schmidt MJ, Chiu CY, Smyl C, Rohwer N, Weylandt KH, Schebb NH (2017) Modulation of the endogenous omega-3 fatty acid and oxylipin profile in vivo – a comparison of the fat-1 transgenic mouse with C57BL/6 wildtype mice on an omega-3 fatty acid enriched diet. PLoS One 12(9):e0184470.  https://doi.org/10.1371/journal.pone.0184470CrossRefPubMedPubMedCentralGoogle Scholar
  95. Patwardhan AM, Scotland PE, Akopian AN, Hargreaves KM (2009) Activation of TRPV1 in the spinal cord by oxidized linoleic acid metabolites contributes to inflammatory hyperalgesia. Proc Natl Acad Sci U S A 106(44):18820–18824.  https://doi.org/10.1073/pnas.0905415106CrossRefPubMedPubMedCentralGoogle Scholar
  96. Perwitz N, Fasshauer M, Klein J (2006) Cannabinoid receptor signaling directly inhibits thermogenesis and alters expression of adiponectin and visfatin. Horm Metab Res 38(5):356–358.  https://doi.org/10.1055/s-2006-925401CrossRefPubMedGoogle Scholar
  97. Petrovic N, Walden TB, Shabalina IG, Timmons JA, Cannon B, Nedergaard J (2010) Chronic peroxisome proliferator-activated receptor gamma (PPARgamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J Biol Chem 285(10):7153–7164.  https://doi.org/10.1074/jbc.M109.053942CrossRefPubMedGoogle Scholar
  98. Pisani DF, Djedaini M, Beranger GE, Elabd C, Scheideler M, Ailhaud G, Amri EZ (2011) Differentiation of human adipose-derived stem cells into “Brite” (Brown-in-White) adipocytes. Front Endocrinol (Lausanne) 2:87.  https://doi.org/10.3389/fendo.2011.00087CrossRefGoogle Scholar
  99. Pisani DF, Ghandour RA, Beranger GE, Le Faouder P, Chambard JC, Giroud M, Vegiopoulos A, Djedaini M, Bertrand-Michel J, Tauc M, Herzig S, Langin D, Ailhaud G, Duranton C, Amri EZ (2014) The omega6-fatty acid, arachidonic acid, regulates the conversion of white to brite adipocyte through a prostaglandin/calcium mediated pathway. Mol Metab 3(9):834–847.  https://doi.org/10.1016/j.molmet.2014.09.003CrossRefPubMedPubMedCentralGoogle Scholar
  100. Plourde M, Cunnane SC (2007) Extremely limited synthesis of long chain polyunsaturates in adults: implications for their dietary essentiality and use as supplements. Appl Physiol Nutr Metab 32(4):619–634.  https://doi.org/10.1139/H07-034CrossRefPubMedGoogle Scholar
  101. Pradhan RN, Zachara M, Deplancke B (2017) A systems perspective on brown adipogenesis and metabolic activation. Obes Rev 18(Suppl 1):65–81.  https://doi.org/10.1111/obr.12512CrossRefPubMedGoogle Scholar
  102. Prasain JK, Wilson L, Hoang HD, Moore R, Miller MA (2015) Comparative lipidomics of Caenorhabditis elegans metabolic disease models by SWATH non-targeted tandem mass spectrometry. Metabolites 5(4):677–696.  https://doi.org/10.3390/metabo5040677CrossRefPubMedPubMedCentralGoogle Scholar
  103. Qiu Y, Nguyen KD, Odegaard JI, Cui X, Tian X, Locksley RM, Palmiter RD, Chawla A (2014) Eosinophils and type 2 cytokine signaling in macrophages orchestrate development of functional beige fat. Cell 157(6):1292–1308.  https://doi.org/10.1016/j.cell.2014.03.066CrossRefPubMedPubMedCentralGoogle Scholar
  104. Quarta C, Bellocchio L, Mancini G, Mazza R, Cervino C, Braulke LJ, Fekete C, Latorre R, Nanni C, Bucci M, Clemens LE, Heldmaier G, Watanabe M, Leste-Lassere T, Maitre M, Tedesco L, Fanelli F, Reuss S, Klaus S, Srivastava RK, Monory K, Valerio A, Grandis A, De Giorgio R, Pasquali R, Nisoli E, Cota D, Lutz B, Marsicano G, Pagotto U (2010) CB(1) signaling in forebrain and sympathetic neurons is a key determinant of endocannabinoid actions on energy balance. Cell Metab 11(4):273–285.  https://doi.org/10.1016/j.cmet.2010.02.015CrossRefPubMedGoogle Scholar
  105. Quesada-Lopez T, Cereijo R, Turatsinze JV, Planavila A, Cairo M, Gavalda-Navarro A, Peyrou M, Moure R, Iglesias R, Giralt M, Eizirik DL, Villarroya F (2016) The lipid sensor GPR120 promotes brown fat activation and FGF21 release from adipocytes. Nat Commun 7:13479.  https://doi.org/10.1038/ncomms13479CrossRefPubMedPubMedCentralGoogle Scholar
  106. Raz A (1972a) Interaction of prostaglandins with blood plasma proteins. Comparative binding of prostaglandins A 2, F 2 and E 2 to human plasma proteins. Biochem J 130(2):631–636CrossRefGoogle Scholar
  107. Raz A (1972b) Interaction of prostaglandins with blood plasma proteins. I. Binding of prostaglandin E 2 to human plasma proteins and its effect on the physiological activity of prostaglandin E 2 in vitro and in vivo. Biochim Biophys Acta 280(4):602–613CrossRefGoogle Scholar
  108. Reginato MJ, Krakow SL, Bailey ST, Lazar MA (1998) Prostaglandins promote and block adipogenesis through opposing effects on peroxisome proliferator-activated receptor gamma. J Biol Chem 273(4):1855–1858CrossRefGoogle Scholar
  109. Richard D, Guesdon B, Timofeeva E (2009) The brain endocannabinoid system in the regulation of energy balance. Best Pract Res Clin Endocrinol Metab 23(1):17–32.  https://doi.org/10.1016/j.beem.2008.10.007CrossRefPubMedGoogle Scholar
  110. Riederer M, Lechleitner M, Kofeler H, Frank S (2017) Reduced expression of adipose triglyceride lipase decreases arachidonic acid release and prostacyclin secretion in human aortic endothelial cells. Arch Physiol Biochem 123(4):249–253.  https://doi.org/10.1080/13813455.2017.1309052CrossRefPubMedPubMedCentralGoogle Scholar
  111. Rozenfeld R, Devi LA (2008) Regulation of CB1 cannabinoid receptor trafficking by the adaptor protein AP-3. FASEB J 22(7):2311–2322.  https://doi.org/10.1096/fj.07-102731CrossRefPubMedPubMedCentralGoogle Scholar
  112. Ruiz de Azua I, Mancini G, Srivastava RK, Rey AA, Cardinal P, Tedesco L, Zingaretti CM, Sassmann A, Quarta C, Schwitter C, Conrad A, Wettschureck N, Vemuri VK, Makriyannis A, Hartwig J, Mendez-Lago M, Bindila L, Monory K, Giordano A, Cinti S, Marsicano G, Offermanns S, Nisoli E, Pagotto U, Cota D, Lutz B (2017) Adipocyte cannabinoid receptor CB1 regulates energy homeostasis and alternatively activated macrophages. J Clin Invest 127(11):4148–4162.  https://doi.org/10.1172/JCI83626CrossRefPubMedPubMedCentralGoogle Scholar
  113. Saito M, Okamatsu-Ogura Y, Matsushita M, Watanabe K, Yoneshiro T, Nio-Kobayashi J, Iwanaga T, Miyagawa M, Kameya T, Nakada K, Kawai Y, Tsujisaki M (2009) High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 58(7):1526–1531.  https://doi.org/10.2337/db09-0530CrossRefPubMedPubMedCentralGoogle Scholar
  114. Scammell TE, Elmquist JK, Griffin JD, Saper CB (1996) Ventromedial preoptic prostaglandin E2 activates fever-producing autonomic pathways. J Neurosci 16(19):6246–6254CrossRefGoogle Scholar
  115. Schebb NH, Ostermann AI, Yang J, Hammock BD, Hahn A, Schuchardt JP (2014) Comparison of the effects of long-chain omega-3 fatty acid supplementation on plasma levels of free and esterified oxylipins. Prostaglandins Other Lipid Mediat 113-115:21–29.  https://doi.org/10.1016/j.prostaglandins.2014.05.002CrossRefPubMedGoogle Scholar
  116. Schlager S, Goeritzer M, Jandl K, Frei R, Vujic N, Kolb D, Strohmaier H, Dorow J, Eichmann TO, Rosenberger A, Wolfler A, Lass A, Kershaw EE, Ceglarek U, Dichlberger A, Heinemann A, Kratky D (2015) Adipose triglyceride lipase acts on neutrophil lipid droplets to regulate substrate availability for lipid mediator synthesis. J Leukoc Biol 98(5):837–850.  https://doi.org/10.1189/jlb.3A0515-206RCrossRefPubMedPubMedCentralGoogle Scholar
  117. Schuchardt JP, Schmidt S, Kressel G, Dong H, Willenberg I, Hammock BD, Hahn A, Schebb NH (2013) Comparison of free serum oxylipin concentrations in hyper- vs. normolipidemic men. Prostaglandins Leukot Essent Fatty Acids 89(1):19–29.  https://doi.org/10.1016/j.plefa.2013.04.001CrossRefPubMedPubMedCentralGoogle Scholar
  118. Schuster VL, Chi Y, Lu R (2015) The prostaglandin transporter: eicosanoid reuptake, control of signaling, and development of high-affinity inhibitors as drug candidates. Trans Am Clin Climatol Assoc 126:248–257PubMedPubMedCentralGoogle Scholar
  119. Seale P, Kajimura S, Spiegelman BM (2009) Transcriptional control of brown adipocyte development and physiological function – of mice and men. Genes Dev 23(7):788–797.  https://doi.org/10.1101/gad.1779209CrossRefPubMedPubMedCentralGoogle Scholar
  120. Shearer GC, Newman JW (2008) Lipoprotein lipase releases esterified oxylipins from very low-density lipoproteins. Prostaglandins Leukot Essent Fatty Acids 79(6):215–222.  https://doi.org/10.1016/j.plefa.2008.09.023CrossRefPubMedPubMedCentralGoogle Scholar
  121. Shearer GC, Borkowski K, Puumala SL, Harris WS, Pedersen TL, Newman JW (2018) Abnormal lipoprotein oxylipins in metabolic syndrome and partial correction by omega-3 fatty acids. Prostaglandins Leukot Essent Fatty Acids 128:1–10.  https://doi.org/10.1016/j.plefa.2017.10.006CrossRefPubMedGoogle Scholar
  122. da-Silva WS, Ribich S, Arrojo e Drigo R, Castillo M, Patti ME, Bianco AC (2011) The chemical chaperones tauroursodeoxycholic and 4-phenylbutyric acid accelerate thyroid hormone activation and energy expenditure. FEBS Lett 585(3):539–544.  https://doi.org/10.1016/j.febslet.2010.12.044CrossRefPubMedPubMedCentralGoogle Scholar
  123. Silvestri C, Di Marzo V (2013) The endocannabinoid system in energy homeostasis and the etiopathology of metabolic disorders. Cell Metab 17(4):475–490.  https://doi.org/10.1016/j.cmet.2013.03.001CrossRefPubMedGoogle Scholar
  124. Simopoulos AP (2001) Evolutionary aspects of diet and essential fatty acids. World Rev Nutr Diet 88:18–27CrossRefGoogle Scholar
  125. Simopoulos AP (2016) An increase in the Omega-6/Omega-3 fatty acid ratio increases the risk for obesity. Nutrients 8(3):128.  https://doi.org/10.3390/nu8030128CrossRefPubMedPubMedCentralGoogle Scholar
  126. Sisemore MF, Zheng J, Yang JC, Thompson DA, Plopper CG, Cortopassi GA, Hammock BD (2001) Cellular characterization of leukotoxin diol-induced mitochondrial dysfunction. Arch Biochem Biophys 392(1):32–37.  https://doi.org/10.1006/abbi.2001.2434CrossRefPubMedGoogle Scholar
  127. Strassburg K, Huijbrechts AM, Kortekaas KA, Lindeman JH, Pedersen TL, Dane A, Berger R, Brenkman A, Hankemeier T, van Duynhoven J, Kalkhoven E, Newman JW, Vreeken RJ (2012) Quantitative profiling of oxylipins through comprehensive LC-MS/MS analysis: application in cardiac surgery. Anal Bioanal Chem 404(5):1413–1426.  https://doi.org/10.1007/s00216-012-6226-xCrossRefPubMedPubMedCentralGoogle Scholar
  128. Suarez J, Rivera P, Arrabal S, Crespillo A, Serrano A, Baixeras E, Pavon FJ, Cifuentes M, Nogueiras R, Ballesteros J, Dieguez C, Rodriguez de Fonseca F (2014) Oleoylethanolamide enhances beta-adrenergic-mediated thermogenesis and white-to-brown adipocyte phenotype in epididymal white adipose tissue in rat. Dis Model Mech 7(1):129–141.  https://doi.org/10.1242/dmm.013110CrossRefPubMedGoogle Scholar
  129. Teodoro JS, Zouhar P, Flachs P, Bardova K, Janovska P, Gomes AP, Duarte FV, Varela AT, Rolo AP, Palmeira CM, Kopecky J (2014) Enhancement of brown fat thermogenesis using chenodeoxycholic acid in mice. Int J Obes (Lond) 38(8):1027–1034.  https://doi.org/10.1038/ijo.2013.230CrossRefGoogle Scholar
  130. Ueno T, Fujimori K (2011) Novel suppression mechanism operating in early phase of adipogenesis by positive feedback loop for enhancement of cyclooxygenase-2 expression through prostaglandin F2alpha receptor mediated activation of MEK/ERK-CREB cascade. FEBS J 278(16):2901–2912.  https://doi.org/10.1111/j.1742-4658.2011.08213.xCrossRefPubMedGoogle Scholar
  131. Uozumi N, Shimizu T (2002) Roles for cytosolic phospholipase A2alpha as revealed by gene-targeted mice. Prostaglandins Other Lipid Mediat 68-69:59–69CrossRefGoogle Scholar
  132. Ushikubi F, Segi E, Sugimoto Y, Murata T, Matsuoka T, Kobayashi T, Hizaki H, Tuboi K, Katsuyama M, Ichikawa A, Tanaka T, Yoshida N, Narumiya S (1998) Impaired febrile response in mice lacking the prostaglandin E receptor subtype EP3. Nature 395(6699):281–284.  https://doi.org/10.1038/26233CrossRefPubMedGoogle Scholar
  133. Vargas-Castillo A, Fuentes-Romero R, Rodriguez-Lopez LA, Torres N, Tovar AR (2017) Understanding the biology of thermogenic fat: is browning a new approach to the treatment of obesity? Arch Med Res 48(5):401–413.  https://doi.org/10.1016/j.arcmed.2017.10.002CrossRefPubMedPubMedCentralGoogle Scholar
  134. Vassaux G, Gaillard D, Darimont C, Ailhaud G, Negrel R (1992) Differential response of preadipocytes and adipocytes to prostacyclin and prostaglandin E2: physiological implications. Endocrinology 131(5):2393–2398.  https://doi.org/10.1210/endo.131.5.1330499CrossRefPubMedGoogle Scholar
  135. Vegiopoulos A, Muller-Decker K, Strzoda D, Schmitt I, Chichelnitskiy E, Ostertag A, Berriel Diaz M, Rozman J, Hrabe de Angelis M, Nusing RM, Meyer CW, Wahli W, Klingenspor M, Herzig S (2010) Cyclooxygenase-2 controls energy homeostasis in mice by de novo recruitment of brown adipocytes. Science 328(5982):1158–1161.  https://doi.org/10.1126/science.1186034CrossRefPubMedGoogle Scholar
  136. Velazquez-Villegas LA, Perino A, Lemos V, Zietak M, Nomura M, Pols TWH, Schoonjans K (2018) TGR5 signalling promotes mitochondrial fission and beige remodelling of white adipose tissue. Nat Commun 9(1):245.  https://doi.org/10.1038/s41467-017-02068-0CrossRefPubMedPubMedCentralGoogle Scholar
  137. Vijgen GH, Bouvy ND, Teule GJ, Brans B, Schrauwen P, van Marken Lichtenbelt WD (2011) Brown adipose tissue in morbidly obese subjects. PLoS One 6(2):e17247.  https://doi.org/10.1371/journal.pone.0017247CrossRefPubMedPubMedCentralGoogle Scholar
  138. Volat FE, Pointud JC, Pastel E, Morio B, Sion B, Hamard G, Guichardant M, Colas R, Lefrancois-Martinez AM, Martinez A (2012) Depressed levels of prostaglandin F2alpha in mice lacking Akr1b7 increase basal adiposity and predispose to diet-induced obesity. Diabetes 61(11):2796–2806.  https://doi.org/10.2337/db11-1297CrossRefPubMedPubMedCentralGoogle Scholar
  139. Watanabe M, Houten SM, Mataki C, Christoffolete MA, Kim BW, Sato H, Messaddeq N, Harney JW, Ezaki O, Kodama T, Schoonjans K, Bianco AC, Auwerx J (2006) Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 439(7075):484–489.  https://doi.org/10.1038/nature04330CrossRefPubMedGoogle Scholar
  140. Watanabe M, Horai Y, Houten SM, Morimoto K, Sugizaki T, Arita E, Mataki C, Sato H, Tanigawara Y, Schoonjans K, Itoh H, Auwerx J (2011) Lowering bile acid pool size with a synthetic farnesoid X receptor (FXR) agonist induces obesity and diabetes through reduced energy expenditure. J Biol Chem 286(30):26913–26920.  https://doi.org/10.1074/jbc.M111.248203CrossRefPubMedPubMedCentralGoogle Scholar
  141. Watanabe M, Morimoto K, Houten SM, Kaneko-Iwasaki N, Sugizaki T, Horai Y, Mataki C, Sato H, Murahashi K, Arita E, Schoonjans K, Suzuki T, Itoh H, Auwerx J (2012) Bile acid binding resin improves metabolic control through the induction of energy expenditure. PLoS One 7(8):e38286.  https://doi.org/10.1371/journal.pone.0038286CrossRefPubMedPubMedCentralGoogle Scholar
  142. Whittle BJ, Moncada S, Whiting F, Vane JR (1980) Carbacyclin – a potent stable prostacyclin analogue for the inhibition of platelet aggregation. Prostaglandins 19(4):605–627CrossRefGoogle Scholar
  143. Willenberg I, Ostermann AI, Schebb NH (2015) Targeted metabolomics of the arachidonic acid cascade: current state and challenges of LC-MS analysis of oxylipins. Anal Bioanal Chem 407(10):2675–2683.  https://doi.org/10.1007/s00216-014-8369-4CrossRefPubMedGoogle Scholar
  144. Xue Y, Xu X, Zhang XQ, Farokhzad OC, Langer R (2016) Preventing diet-induced obesity in mice by adipose tissue transformation and angiogenesis using targeted nanoparticles. Proc Natl Acad Sci U S A 113(20):5552–5557.  https://doi.org/10.1073/pnas.1603840113CrossRefPubMedPubMedCentralGoogle Scholar
  145. Ying F, Cai Y, Cai Y, Wang Y, Tang EHC (2017) Prostaglandin E receptor subtype 4 regulates lipid droplet size and mitochondrial activity in murine subcutaneous white adipose tissue. FASEB J 31(9):4023–4036.  https://doi.org/10.1096/fj.201700191RCrossRefPubMedGoogle Scholar
  146. Zhang P, Meng X, Li D, Calderone R, Mao D, Sui B (2017) Commensal homeostasis of gut microbiota-host for the impact of obesity. Front Physiol 8:1122.  https://doi.org/10.3389/fphys.2017.01122CrossRefPubMedGoogle Scholar
  147. Zhao M, Chen X (2014) Eicosapentaenoic acid promotes thermogenic and fatty acid storage capacity in mouse subcutaneous adipocytes. Biochem Biophys Res Commun 450(4):1446–1451.  https://doi.org/10.1016/j.bbrc.2014.07.010CrossRefPubMedGoogle Scholar
  148. Zhou SF, Wang LL, Di YM, Xue CC, Duan W, Li CG, Li Y (2008) Substrates and inhibitors of human multidrug resistance associated proteins and the implications in drug development. Curr Med Chem 15(20):1981–2039CrossRefGoogle Scholar
  149. Zietak M, Kozak LP (2016) Bile acids induce uncoupling protein 1-dependent thermogenesis and stimulate energy expenditure at thermoneutrality in mice. Am J Physiol Endocrinol Metab 310(5):E346–E354.  https://doi.org/10.1152/ajpendo.00485.2015CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Stefanie F. Maurer
    • 1
    • 2
    Email author
  • Sebastian Dieckmann
    • 1
    • 2
  • Karin Kleigrewe
    • 3
  • Cécilia Colson
    • 4
  • Ez-Zoubir Amri
    • 4
  • Martin Klingenspor
    • 1
    • 2
  1. 1.Molecular Nutritional Medicine, Else Kröner-Fresenius Center for Nutritional MedicineTechnical University of MunichFreisingGermany
  2. 2.ZIEL Institute for Food and Health, TUM School of Life SciencesTechnical University of MunichFreisingGermany
  3. 3.Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS)Technical University of MunichFreisingGermany
  4. 4.Université Côte d’Azur, CNRS, Inserm, iBVNiceFrance

Personalised recommendations