Advertisement

The Mechanism FA-Dependent H+ Transport by UCP1

  • Ambre M. BertholetEmail author
  • Yuriy KirichokEmail author
Chapter
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 251)

Abstract

Uncoupling protein 1 (UCP1) is an integral protein of the inner mitochondrial membrane (IMM) that is expressed specifically in brown and beige fat depots. UCP1 is responsible for the production of heat to control core body temperature, the regulation of fat metabolism, and the energy balance. As an uncoupling protein, UCP1 transports H+ across the IMM in presence of long-chain fatty acids (FA), which makes brown fat mitochondria produce heat at the expense of ATP. However, the exact mechanism of UCP1 action has remained difficult to elucidate, because direct methods for studying currents generated by UCP1 were unavailable. Recently, the patch-clamp technique was successfully applied to brown and beige fat mitochondria to directly study H+ currents across the IMM and characterize UCP1 function. A new model of the UCP1 mechanism was proposed based on the patch-clamp analysis. In this model, both FA anions (FA) and H+ are transport substrates of UCP1, and UCP1 operates as a non-canonical FA/H+ symporter. Here, we summarize recent findings obtained with the patch-clamp technique that describe how UCP1 can transport not only H+ but also FA.

Keywords

Beige fat Brown fat Fatty acid Mitochondrial uncoupling Mitochondrial uncoupling protein 1 Patch-clamp technique Purine nucleotides Thermogenesis UCP1 

Notes

Acknowledgments

This work was supported by NIH grant 5R01GM107710 to Y.K.

References

  1. Aquila H, Link TA, Klingenberg M (1985) The uncoupling protein from brown fat mitochondria is related to the mitochondrial ADP/ATP carrier. Analysis of sequence homologies and of folding of the protein in the membrane. EMBO J 4:2369–2376CrossRefGoogle Scholar
  2. Berardi MJ, Shih WM, Harrison SC, Chou JJ (2011) Mitochondrial uncoupling protein 2 structure determined by NMR molecular fragment searching. Nature 476:109–113CrossRefGoogle Scholar
  3. Bertholet AM, Kirichok Y (2017) UCP1: a transporter for H+ and fatty acid anions. Biochimie 134:28–34CrossRefGoogle Scholar
  4. Bertholet AM, Kazak L, Chouchani ET, Bogaczynska MG, Paranjpe I, Wainwright GL, Betourne A, Kajimura S, Spiegelman BM, Kirichok Y (2017) Mitochondrial patch clamp of beige adipocytes reveals UCP1-positive and UCP1-negative cells both exhibiting futile creatine cycling. Cell Metab 25:811–822.e814CrossRefGoogle Scholar
  5. Bouillaud F, Weissenbach J, Ricquier D (1986) Complete cDNA-derived amino acid sequence of rat brown fat uncoupling protein. J Biol Chem 261:1487–1490PubMedGoogle Scholar
  6. Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84:277–359CrossRefGoogle Scholar
  7. Cannon B, Sundin U, Romert L (1977) Palmitoyl coenzyme A: a possible physiological regulator of nucleotide binding to brown adipose tissue mitochondria. FEBS Lett 74:43–46CrossRefGoogle Scholar
  8. Chouchani ET, Kazak L, Jedrychowski MP, Lu GZ, Erickson BK, Szpyt J, Pierce KA, Laznik-Bogoslavski D, Vetrivelan R, Clish CB et al (2016) Mitochondrial ROS regulate thermogenic energy expenditure and sulfenylation of UCP1. Nature 532:112–116CrossRefGoogle Scholar
  9. Cohen P, Spiegelman BM (2015) Brown and beige fat: molecular parts of a thermogenic machine. Diabetes 64:2346–2351CrossRefGoogle Scholar
  10. Echtay KS, Winkler E, Bienengraeber M, Klingenberg M (2000) Site-directed mutagenesis identifies residues in uncoupling protein (UCP1) involved in three different functions. Biochemistry 39:3311–3317CrossRefGoogle Scholar
  11. Echtay KS, Bienengraeber M, Klingenberg M (2001) Role of intrahelical arginine residues in functional properties of uncoupling protein (UCP1). Biochemistry 40:5243–5248CrossRefGoogle Scholar
  12. Enerback S, Jacobsson A, Simpson EM, Guerra C, Yamashita H, Harper ME, Kozak LP (1997) Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 387:90–94CrossRefGoogle Scholar
  13. Fedorenko A, Lishko PV, Kirichok Y (2012) Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria. Cell 151:400–413CrossRefGoogle Scholar
  14. Feldmann HM, Golozoubova V, Cannon B, Nedergaard J (2009) UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell Metab 9:203–209CrossRefGoogle Scholar
  15. Garlid KD, Orosz DE, Modriansky M, Vassanelli S, Jezek P (1996) On the mechanism of fatty acid-induced proton transport by mitochondrial uncoupling protein. J Biol Chem 271:2615–2620CrossRefGoogle Scholar
  16. Garlid KD, Jaburek M, Jezek P (1998) The mechanism of proton transport mediated by mitochondrial uncoupling proteins. FEBS Lett 438:10–14CrossRefGoogle Scholar
  17. Gonzalez-Barroso MM, Fleury C, Bouillaud F, Nicholls DG, Rial E (1998) The uncoupling protein UCP1 does not increase the proton conductance of the inner mitochondrial membrane by functioning as a fatty acid anion transporter. J Biol Chem 273:15528–15532CrossRefGoogle Scholar
  18. Huang SG (2003) Binding of fatty acids to the uncoupling protein from brown adipose tissue mitochondria. Arch Biochem Biophys 412:142–146CrossRefGoogle Scholar
  19. Jezek P, Jaburek M, Garlid KD (2010) Channel character of uncoupling protein-mediated transport. FEBS Lett 584:2135–2141CrossRefGoogle Scholar
  20. Jiménez-Jiménez J, Zardoya R, Ledesma A, García de Lacoba M, Zaragoza P, Mar González-Barroso M, Rial E (2006) Evolutionarily distinct residues in the uncoupling protein UCP1 are essential for its characteristic basal proton conductance. J Mol Biol 359:1010–1022CrossRefGoogle Scholar
  21. Katiyar SS, Shrago E (1991) Differential interaction of fatty acids and fatty acyl CoA esters with the purified/reconstituted brown adipose tissue mitochondrial uncoupling protein. Biochem Biophys Res Commun 175:1104–1111CrossRefGoogle Scholar
  22. Kazak L, Chouchani ET, Jedrychowski MP, Erickson BK, Shinoda K, Cohen P, Vetrivelan R, Lu GZ, Laznik-Bogoslavski D, Hasenfuss SC et al (2015) A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat. Cell 163:643–655CrossRefGoogle Scholar
  23. Klingenberg M (2008) The ADP and ATP transport in mitochondria and its carrier. Biochim Biophys Acta 1778:1978–2021CrossRefGoogle Scholar
  24. Klingenberg M (2010) Wanderings in bioenergetics and biomembranes. Biochim Biophys Acta 1797:579–594CrossRefGoogle Scholar
  25. Klingenberg M (2017) UCP1 – a sophisticated energy valve. Biochimie 134:19–27CrossRefGoogle Scholar
  26. Klingenberg M, Huang SG (1999) Structure and function of the uncoupling protein from brown adipose tissue. Biochim Biophys Acta 1415:271–296CrossRefGoogle Scholar
  27. Klingenberg M, Winkler E (1985) The reconstituted isolated uncoupling protein is a membrane potential driven H+ translocator. EMBO J 4:3087–3092CrossRefGoogle Scholar
  28. Kozak LP, Koza RA, Anunciado-Koza R (2010) Brown fat thermogenesis and body weight regulation in mice: relevance to humans. Int J Obes 34(Suppl 1):S23–S27CrossRefGoogle Scholar
  29. Krauss S, Zhang CY, Lowell BB (2005) The mitochondrial uncoupling-protein homologues. Nat Rev 6:248–261CrossRefGoogle Scholar
  30. Kunji ER, Robinson AJ (2010) Coupling of proton and substrate translocation in the transport cycle of mitochondrial carriers. Curr Opin Struct Biol 20:440–447CrossRefGoogle Scholar
  31. Lin CS, Klingenberg M (1980) Isolation of the uncoupling protein from brown adipose tissue mitochondria. FEBS Lett 113:299–303CrossRefGoogle Scholar
  32. Lin CS, Klingenberg M (1982) Characteristics of the isolated purine nucleotide binding protein from brown fat mitochondria. Biochemistry 21:2950–2956CrossRefGoogle Scholar
  33. Nicholls DG (2001) A history of UCP1. Biochem Soc Trans 29:751–755CrossRefGoogle Scholar
  34. Nicholls DG (2006) The physiological regulation of uncoupling proteins. Biochim Biophys Acta 1757:459–466CrossRefGoogle Scholar
  35. Nicholls DG, Lindberg O (1973) Brown-adipose-tissue mitochondria. The influence of albumin and nucleotides on passive ion permeabilities. Eur J Biochem 37:523–530CrossRefGoogle Scholar
  36. Nicholls DG, Locke RM (1984) Thermogenic mechanisms in brown fat. Physiol Rev 64:1–64CrossRefGoogle Scholar
  37. Nicholls DG, Rial E (1999) A history of the first uncoupling protein, UCP1. J Bioenerg Biomembr 31:399–406CrossRefGoogle Scholar
  38. Palmieri F (2014) Mitochondrial transporters of the SLC25 family and associated diseases: a review. J Inherit Metab Dis 37:565–575CrossRefGoogle Scholar
  39. Pebay-Peyroula E, Dahout-Gonzalez C, Kahn R, Trezeguet V, Lauquin GJ, Brandolin G (2003) Structure of mitochondrial ADP/ATP carrier in complex with carboxyatractyloside. Nature 426:39–44CrossRefGoogle Scholar
  40. Rial E, Gonzalez-Barroso MM (2001) Physiological regulation of the transport activity in the uncoupling proteins UCP1 and UCP2. Biochim Biophys Acta 1504:70–81CrossRefGoogle Scholar
  41. Rial E, Poustie A, Nicholls DG (1983) Brown-adipose-tissue mitochondria: the regulation of the 32000-Mr uncoupling protein by fatty acids and purine nucleotides. Eur J Biochem 137:197–203CrossRefGoogle Scholar
  42. Ricquier D, Kader JC (1976) Mitochondrial protein alteration in active brown fat: a soidum dodecyl sulfate-polyacrylamide gel electrophoretic study. Biochem Biophys Res Commun 73:577–583CrossRefGoogle Scholar
  43. Robinson AJ, Kunji ER (2006) Mitochondrial carriers in the cytoplasmic state have a common substrate binding site. Proc Natl Acad Sci U S A 103:2617–2622CrossRefGoogle Scholar
  44. Robinson AJ, Overy C, Kunji ER (2008) The mechanism of transport by mitochondrial carriers based on analysis of symmetry. Proc Natl Acad Sci U S A 105:17766–17771CrossRefGoogle Scholar
  45. Ruprecht JJ, Hellawell AM, Harding M, Crichton PG, McCoy AJ, Kunji ERS (2014) Structures of yeast mitochondrial ADP/ATP carriers support a domain-based alternating-access transport mechanism. Proc Natl Acad Sci U S A 111:E426–E434CrossRefGoogle Scholar
  46. Shabalina IG, Jacobsson A, Cannon B, Nedergaard J (2004) Native UCP1 displays simple competitive kinetics between the regulators purine nucleotides and fatty acids. J Biol Chem 279:38236–38248CrossRefGoogle Scholar
  47. Shabalina IG, Backlund EC, Bar-Tana J, Cannon B, Nedergaard J (2008) Within brown-fat cells, UCP1-mediated fatty acid-induced uncoupling is independent of fatty acid metabolism. Biochim Biophys Acta 1777:642–650CrossRefGoogle Scholar
  48. Shabalina IG, Petrovic N, de Jong JM, Kalinovich AV, Cannon B, Nedergaard J (2013) UCP1 in brite/beige adipose tissue mitochondria is functionally thermogenic. Cell Rep 5:1196–1203CrossRefGoogle Scholar
  49. Skulachev VP (1991) Fatty acid circuit as a physiological mechanism of uncoupling of oxidative phosphorylation. FEBS Lett 294:158–162CrossRefGoogle Scholar
  50. Winkler E, Klingenberg M (1994) Effect of fatty acids on H+ transport activity of the reconstituted uncoupling protein. J Biol Chem 269:2508–2515PubMedGoogle Scholar
  51. Wu J, Bostrom P, Sparks LM, Ye L, Choi JH, Giang AH, Khandekar M, Virtanen KA, Nuutila P, Schaart G et al (2012) Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150:366–376CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysiologyUniversity of California San FranciscoSan FranciscoUSA

Personalised recommendations