Advertisement

In Vitro Models for Study of Brown Adipocyte Biology

  • Mark ChristianEmail author
Chapter
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 251)

Abstract

Brown adipocytes are the key cell type in brown adipose tissue (BAT) that express the genes required for heat production through the process of thermogenesis. Brown adipocyte cell culture models are important for researching the molecular pathways that control cell autonomous processes. In vitro tools for the study of brown adipocytes include BAT explant cultures and BAT primary cultures that are first proliferated and then differentiated. A number of stable brown preadipocyte cell lines have been generated by the expression transforming factors such as SV40 T antigen. The application of these cell lines reduces the requirement for animal tissue which is needed for primary culture and explants. Furthermore, brown adipocyte cell lines that effectively recapitulate the properties of brown adipocytes permit large-scale experimental procedures that are generally unfeasible with primary cultures that undergo a restricted number of cell divisions. Cell lines are valuable for applications such as large-scale endogenous protein expression, ChIP assay, and procedures requiring antibiotic selection over several cell divisions including stable exogenous gene expression and CRISR/Cas9 gene editing.

Keywords

Brown adipocytes Brown fat Cell lines 

References

  1. Ahfeldt T, Schinzel RT, Lee YK, Hendrickson D, Kaplan A, Lum DH, Camahort R, Xia F, Shay J, Rhee EP, Clish CB, Deo RC, Shen T, Lau FH, Cowley A, Mowrer G, Al-Siddiqi H, Nahrendorf M, Musunuru K, Gerszten RE, Rinn JL, Cowan CA (2012) Programming human pluripotent stem cells into white and brown adipocytes. Nat Cell Biol 14:209–219.  https://doi.org/10.1038/ncb2411CrossRefPubMedPubMedCentralGoogle Scholar
  2. Cannon B, Nedergaard J (2001) Cultures of adipose precursor cells from brown adipose tissue and of clonal brown-adipocyte-like cell lines. Methods Mol Biol 155:213–224.  https://doi.org/10.1385/1-59259-231-7:213CrossRefPubMedGoogle Scholar
  3. Cherington V, Brown M, Paucha E, St Louis J, Spiegelman BM, Roberts TM (1988) Separation of simian virus 40 large-T-antigen-transforming and origin-binding functions from the ability to block differentiation. Mol Cell Biol 8:1380–1384CrossRefGoogle Scholar
  4. Christian M (2015) Transcriptional fingerprinting of “browning” white fat identifies NRG4 as a novel adipokine. Adipocytes 4:50–54.  https://doi.org/10.4161/adip.29853CrossRefGoogle Scholar
  5. Christian M, Kiskinis E, Debevec D, Leonardsson G, White R, Parker MG (2005) RIP140-targeted repression of gene expression in adipocytes. Mol Cell Biol 25:9383–9391.  https://doi.org/10.1128/MCB.25.21.9383-9391.2005CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, Kuo FC, Palmer EL, Tseng YH, Doria A, Kolodny GM, Kahn CR (2009) Identification and importance of brown adipose tissue in adult humans. N Engl J Med 360:1509–1517.  https://doi.org/10.1056/NEJMoa0810780CrossRefPubMedPubMedCentralGoogle Scholar
  7. Dani C, Smith AG, Dessolin S, Leroy P, Staccini L, Villageois P, Darimont C, Ailhaud G (1997) Differentiation of embryonic stem cells into adipocytes in vitro. J Cell Sci 110(Pt 11):1279–1285PubMedGoogle Scholar
  8. de Jong JM, Larsson O, Cannon B, Nedergaard J (2015) A stringent validation of mouse adipose tissue identity markers. Am J Physiol Endocrinol Metab 308:E1085–E1105.  https://doi.org/10.1152/ajpendo.00023.2015CrossRefPubMedGoogle Scholar
  9. Debevec D, Christian M, Morganstein D, Seth A, Herzog B, Parker M, White R (2007) Receptor interacting protein 140 regulates expression of uncoupling protein 1 in adipocytes through specific peroxisome proliferator activated receptor isoforms and estrogen-related receptor alpha. Mol Endocrinol 21:1581–1592.  https://doi.org/10.1210/me.2007-0103CrossRefPubMedPubMedCentralGoogle Scholar
  10. Elabd C, Chiellini C, Massoudi A, Cochet O, Zaragosi LE, Trojani C, Michiels JF, Weiss P, Carle G, Rochet N, Dechesne CA, Ailhaud G, Dani C, Amri EZ (2007) Human adipose tissue-derived multipotent stem cells differentiate in vitro and in vivo into osteocyte-like cells. Biochem Biophys Res Commun 361:342–348.  https://doi.org/10.1016/j.bbrc.2007.06.180CrossRefPubMedGoogle Scholar
  11. Elabd C, Chiellini C, Carmona M, Galitzky J, Cochet O, Petersen R, Penicaud L, Kristiansen K, Bouloumie A, Casteilla L, Dani C, Ailhaud G, Amri EZ (2009) Human multipotent adipose-derived stem cells differentiate into functional brown adipocytes. Stem Cells 27:2753–2760.  https://doi.org/10.1002/stem.200CrossRefPubMedGoogle Scholar
  12. Emont MP, Yu H, Jun H, Hong X, Maganti N, Stegemann JP, Wu J (2015) Using a 3D culture system to differentiate visceral adipocytes in vitro. Endocrinology 156:4761–4768.  https://doi.org/10.1210/en.2015-1567CrossRefPubMedPubMedCentralGoogle Scholar
  13. Gnad T, Scheibler S, von Kugelgen I, Scheele C, Kilic A, Glode A, Hoffmann LS, Reverte-Salisa L, Horn P, Mutlu S, El-Tayeb A, Kranz M, Deuther-Conrad W, Brust P, Lidell ME, Betz MJ, Enerback S, Schrader J, Yegutkin GG, Muller CE, Pfeifer A (2014) Adenosine activates brown adipose tissue and recruits beige adipocytes via A2A receptors. Nature 516:395–399.  https://doi.org/10.1038/nature13816CrossRefPubMedGoogle Scholar
  14. Guennoun A, Kazantzis M, Thomas R, Wabitsch M, Tews D, Seetharama Sastry K, Abdelkarim M, Zilberfarb V, Strosberg AD, Chouchane L (2015) Comprehensive molecular characterization of human adipocytes reveals a transient brown phenotype. J Transl Med 13:135.  https://doi.org/10.1186/s12967-015-0480-6CrossRefPubMedPubMedCentralGoogle Scholar
  15. Hallberg M, Morganstein DL, Kiskinis E, Shah K, Kralli A, Dilworth SM, White R, Parker MG, Christian M (2008) A functional interaction between RIP140 and PGC-1alpha regulates the expression of the lipid droplet protein CIDEA. Mol Cell Biol 28:6785–6795.  https://doi.org/10.1128/MCB.00504-08CrossRefPubMedPubMedCentralGoogle Scholar
  16. Hansen JB, Jorgensen C, Petersen RK, Hallenborg P, De Matteis R, Boye HA, Petrovic N, Enerback S, Nedergaard J, Cinti S, te Riele H, Kristiansen K (2004) Retinoblastoma protein functions as a molecular switch determining white versus brown adipocyte differentiation. Proc Natl Acad Sci U S A 101:4112–4117.  https://doi.org/10.1073/pnas.0301964101CrossRefPubMedPubMedCentralGoogle Scholar
  17. Jat PS, Noble MD, Ataliotis P, Tanaka Y, Yannoutsos N, Larsen L, Kioussis D (1991) Direct derivation of conditionally immortal cell lines from an H-2Kb-tsA58 transgenic mouse. Proc Natl Acad Sci U S A 88:5096–5100CrossRefGoogle Scholar
  18. Kazantzis M, Takahashi V, Hinkle J, Kota S, Zilberfarb V, Issad T, Abdelkarim M, Chouchane L, Strosberg AD (2012) PAZ6 cells constitute a representative model for human brown pre-adipocytes. Front Endocrinol 3:13.  https://doi.org/10.3389/fendo.2012.00013CrossRefGoogle Scholar
  19. Kiskinis E, Chatzeli L, Curry E, Kaforou M, Frontini A, Cinti S, Montana G, Parker MG, Christian M (2014) RIP140 represses the “brown-in-white” adipocyte program including a futile cycle of triacylglycerol breakdown and synthesis. Mol Endocrinol 28:344–356.  https://doi.org/10.1210/me.2013-1254CrossRefPubMedPubMedCentralGoogle Scholar
  20. Klaus S, Choy L, Champigny O, Cassard-Doulcier AM, Ross S, Spiegelman B, Ricquier D (1994) Characterization of the novel brown adipocyte cell line HIB 1B. Adrenergic pathways involved in regulation of uncoupling protein gene expression. J Cell Sci 107(Pt 1):313–319PubMedGoogle Scholar
  21. Klein J, Fasshauer M, Ito M, Lowell BB, Benito M, Kahn CR (1999) Beta(3)-adrenergic stimulation differentially inhibits insulin signaling and decreases insulin-induced glucose uptake in brown adipocytes. J Biol Chem 274:34795–34802CrossRefGoogle Scholar
  22. Lee P, Bova R, Schofield L, Bryant W, Dieckmann W, Slattery A, Govendir MA, Emmett L, Greenfield JR (2016) Brown adipose tissue exhibits a glucose-responsive thermogenic biorhythm in humans. Cell Metab 23:602–609.  https://doi.org/10.1016/j.cmet.2016.02.007CrossRefPubMedGoogle Scholar
  23. Leonardsson G, Steel JH, Christian M, Pocock V, Milligan S, Bell J, So PW, Medina-Gomez G, Vidal-Puig A, White R, Parker MG (2004) Nuclear receptor corepressor RIP140 regulates fat accumulation. Proc Natl Acad Sci U S A 101:8437–8442.  https://doi.org/10.1073/pnas.0401013101CrossRefPubMedPubMedCentralGoogle Scholar
  24. Miller CN, Yang JY, England E, Yin A, Baile CA, Rayalam S (2015) Isoproterenol increases uncoupling, glycolysis, and markers of Beiging in mature 3T3-L1 adipocytes. PLoS One 10:e0138344.  https://doi.org/10.1371/journal.pone.0138344CrossRefPubMedPubMedCentralGoogle Scholar
  25. Pisani DF, Djedaini M, Beranger GE, Elabd C, Scheideler M, Ailhaud G, Amri EZ (2011) Differentiation of human adipose-derived stem cells into “Brite” (Brown-in-White) adipocytes. Front Endocrinol 2:87.  https://doi.org/10.3389/fendo.2011.00087CrossRefGoogle Scholar
  26. Pulinilkunnil T, He H, Kong D, Asakura K, Peroni OD, Lee A, Kahn BB (2011) Adrenergic regulation of AMP-activated protein kinase in brown adipose tissue in vivo. J Biol Chem 286:8798–8809.  https://doi.org/10.1074/jbc.M111.218719CrossRefPubMedPubMedCentralGoogle Scholar
  27. Puri V, Chakladar A, Virbasius JV, Konda S, Powelka AM, Chouinard M, Hagan GN, Perugini R, Czech MP (2007) RNAi-based gene silencing in primary mouse and human adipose tissues. J Lipid Res 48:465–471.  https://doi.org/10.1194/jlr.D600033-JLR200CrossRefPubMedGoogle Scholar
  28. Rodriguez AM, Pisani D, Dechesne CA, Turc-Carel C, Kurzenne JY, Wdziekonski B, Villageois A, Bagnis C, Breittmayer JP, Groux H, Ailhaud G, Dani C (2005) Transplantation of a multipotent cell population from human adipose tissue induces dystrophin expression in the immunocompetent mdx mouse. J Exp Med 201:1397–1405.  https://doi.org/10.1084/jem.20042224CrossRefPubMedPubMedCentralGoogle Scholar
  29. Rosell M, Kaforou M, Frontini A, Okolo A, Chan YW, Nikolopoulou E, Millership S, Fenech ME, Macintyre D, Turner JO, Moore JD, Blackburn E, Gullick WJ, Cinti S, Montana G, Parker MG, Christian M (2014) Brown and white adipose tissues: intrinsic differences in gene expression and response to cold exposure in mice. Am J Physiol Endocrinol Metab 306:E945–E964.  https://doi.org/10.1152/ajpendo.00473.2013CrossRefPubMedPubMedCentralGoogle Scholar
  30. Rosen ED, MacDougald OA (2006) Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol 7:885–896.  https://doi.org/10.1038/nrm2066CrossRefPubMedGoogle Scholar
  31. Ross SR, Choy L, Graves RA, Fox N, Solevjeva V, Klaus S, Ricquier D, Spiegelman BM (1992) Hibernoma formation in transgenic mice and isolation of a brown adipocyte cell line expressing the uncoupling protein gene. Proc Natl Acad Sci U S A 89:7561–7565CrossRefGoogle Scholar
  32. Scime A, Grenier G, Huh MS, Gillespie MA, Bevilacqua L, Harper ME, Rudnicki MA (2005) Rb and p107 regulate preadipocyte differentiation into white versus brown fat through repression of PGC-1alpha. Cell Metab 2:283–295.  https://doi.org/10.1016/j.cmet.2005.10.002CrossRefPubMedGoogle Scholar
  33. Smas CM, Sul HS (1995) Control of adipocyte differentiation. Biochem J 309(Pt 3):697–710CrossRefGoogle Scholar
  34. Sugihara H, Yonemitsu N, Miyabara S, Yun K (1986) Primary cultures of unilocular fat cells: characteristics of growth in vitro and changes in differentiation properties. Differentiation 31:42–49CrossRefGoogle Scholar
  35. Tran KV, Gealekman O, Frontini A, Zingaretti MC, Morroni M, Giordano A, Smorlesi A, Perugini J, De Matteis R, Sbarbati A, Corvera S, Cinti S (2012) The vascular endothelium of the adipose tissue gives rise to both white and brown fat cells. Cell Metab 15:222–229.  https://doi.org/10.1016/j.cmet.2012.01.008CrossRefPubMedPubMedCentralGoogle Scholar
  36. Van De Pette M, Tunster SJ, McNamara GI, Shelkovnikova T, Millership S, Benson L, Peirson S, Christian M, Vidal-Puig A, John RM (2016) Cdkn1c boosts the development of brown adipose tissue in a murine model of Silver Russell Syndrome. PLoS Genet 12:e1005916.  https://doi.org/10.1371/journal.pgen.1005916CrossRefGoogle Scholar
  37. Wolf Y, Boura-Halfon S, Cortese N, Haimon Z, Sar Shalom H, Kuperman Y, Kalchenko V, Brandis A, David E, Segal-Hayoun Y, Chappell-Maor L, Yaron A, Jung S (2017) Brown-adipose-tissue macrophages control tissue innervation and homeostatic energy expenditure. Nat Immunol 18:665–674.  https://doi.org/10.1038/ni.3746CrossRefPubMedPubMedCentralGoogle Scholar
  38. Wu J, Bostrom P, Sparks LM, Ye L, Choi JH, Giang AH, Khandekar M, Virtanen KA, Nuutila P, Schaart G, Huang K, Tu H, van Marken Lichtenbelt WD, Hoeks J, Enerback S, Schrauwen P, Spiegelman BM (2012) Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150:366–376.  https://doi.org/10.1016/j.cell.2012.05.016CrossRefPubMedPubMedCentralGoogle Scholar
  39. Zaragosi LE, Ailhaud G, Dani C (2006) Autocrine fibroblast growth factor 2 signaling is critical for self-renewal of human multipotent adipose-derived stem cells. Stem Cells 24:2412–2419.  https://doi.org/10.1634/stemcells.2006-0006CrossRefPubMedGoogle Scholar
  40. Zennaro MC, Le Menuet D, Viengchareun S, Walker F, Ricquier D, Lombes M (1998) Hibernoma development in transgenic mice identifies brown adipose tissue as a novel target of aldosterone action. J Clin Invest 101:1254–1260.  https://doi.org/10.1172/JCI1915CrossRefPubMedPubMedCentralGoogle Scholar
  41. Zilberfarb V, Pietri-Rouxel F, Jockers R, Krief S, Delouis C, Issad T, Strosberg AD (1997) Human immortalized brown adipocytes express functional beta3-adrenoceptor coupled to lipolysis. J Cell Sci 110(Pt 7):801–807PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Biomedical Sciences, Warwick Medical SchoolUniversity of WarwickCoventryUK

Personalised recommendations