Advertisement

Evolution of UCP1

  • Michael J. Gaudry
  • Kevin L. Campbell
  • Martin JastrochEmail author
Chapter
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 251)

Abstract

Brown adipose tissue (BAT), the specialized heat-producing organ found in many placental mammals including humans, may be accessible for clinical drug intervention to help combat metabolic diseases. Understanding the biology of BAT and its thermogenic uncoupling protein 1 (UCP1) will benefit from an assessment of its evolution, answering where UCP1 originated and how it has been modified and integrated into cellular energy metabolism. Here, we review topical insights regarding the molecular evolution of UCP1—also reconstructing the proximate and ultimate factors selecting for brown fat thermogenesis in placental mammals. This new thinking on “old” events will assist our understanding of how thermogenic mitochondrial uncoupling was integrated into the physiology of the brown adipocyte. Recent comparative studies examining the occurrence of UCP1 in vertebrates not only identified the ancient (pre-mammal) rise of UCP1 but also its repeated downfall during mammalian evolution as evidenced by multiple independent gene loss and/or inactivation events. Together with the comparative physiology of various species, we may be able to find conditions that favor UCP1 thermogenesis and, learning from these insights, identify molecular networks that will be useful to pharmacologically stimulate the tissue.

Keywords

Brown adipose tissue Evolution Metabolic disease Thermogenesis Uncoupling protein 

References

  1. Adams AE, Hanrahan O, Nolan DN, Voorheis HP, Fallon P, Porter RK (2008) Images of mitochondrial UCP1 in mouse thymocytes using confocal microscopy. Biochim Biophys Acta 1777:115–117CrossRefGoogle Scholar
  2. Alberti M, Fürsich FT, Abdelhady AA, Anderson N (2017) Middle to late Jurassic equatorial seawater temperatures and latitudinal temperature gradients based on stable isotopes of brachiopods and oysters from Gebel Maghara, Egypt. Palaeogeogr Palaeoclimatol Palaeoecol 468:301–313CrossRefGoogle Scholar
  3. Berg F, Gustafson U, Andersson L (2006) The uncoupling protein 1 gene (UCP1) is disrupted in the pig lineage: a genetic explanation for poor thermoregulation in piglets. PLoS Genet 2:e129CrossRefGoogle Scholar
  4. Bermejo-Nogales A, Claduch-Giner JA, Pérez-Sánchez J (2014) Tissue specific gene expression of uncoupling protein 2 (UCP2) by hypoxia and nutrient availability in gilthead sea bream (Sparus aurata): implications on the physiological significance of UCP1-3 variants. Fish Physiol Biochem 40:751–762CrossRefGoogle Scholar
  5. Brand MD, Esteves TC (2005) Physiological functions of the mitochondrial uncoupling proteins UCP2 and UCP3. Cell Metab 2:85–93CrossRefGoogle Scholar
  6. Cadenas S, Echtay KS, Harper JA, Jekabsons MB, Buckingham JA, Grau E, Abuin A, Chapman H, Clapham JC, Brand MD (2002) The basal proton conductance of skeletal muscle mitochondria from transgenic mice overexpressing or lacking uncoupling protein-3. J Biol Chem 25:2773–2778CrossRefGoogle Scholar
  7. Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84:277–359CrossRefGoogle Scholar
  8. Carrière A, Jeanson Y, Berger-Müller S, André M, Chenouard V, Arnaud E, Barreau C, Walther R, Galinier A, Wdziekonski B, Villageois P, Louche K, Collas P, Moro C, Dani C, Villarroya F, Casteilla L (2014) Browning of white adipose cells by intermediate metabolites: an adaptive mechanism to alleviate redox pressure. Diabetes 63:3253–3265CrossRefGoogle Scholar
  9. Carroll AM, Haines LR, Pearson TW, Fallon PG, Walsh CM, Brennan CM, Breen EP, Porter RK (2005) Identification of a functioning mitochondrial uncoupling protein 1 in thymus. J Biol Chem 280:15534–15543CrossRefGoogle Scholar
  10. Criscuolo F, del Mar Gonzalez-Barroso M, Le Maho Y, Ricquier D, Bouillaud F (2005) Avian uncoupling protein expressed in yeast mitochondria prevents endogenous free radical damage. Proc Biol Sci 272:803–810Google Scholar
  11. Cypress AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, Kuo FC, Palmer EL, Tseng YH, Doria A, Kolodny GM, Kahn CR (2009) Identification and importance of brown adipose tissue in adult humans. N Engl J Med 360:1509–1517CrossRefGoogle Scholar
  12. Echtay K (2007) Mitochondrial uncoupling proteins-what is their physiological role? Free Radic Biol Med 43:1351–1371CrossRefGoogle Scholar
  13. Emre Y, Hurtaud C, Ricquier D, Bouillaud F, Hughes J, Criscuolo F (2007) Avian UCP: the Killjoy in the evolution of the mitochondrial uncoupling proteins. J Mol Evol 65:392–402CrossRefGoogle Scholar
  14. Gaudry MJ, Campbell KL (2017) Evolution of UCP1 transcriptional regulatory elements across the mammalian phylogeny. Front Physiol.  https://doi.org/10.3389/fphys.2017.00670
  15. Gaudry MJ, Jastroch M, Treberg JR, Hofreiter M, Paijmans JLA, Starrett J, Wales N, Signore AV, Springer MS, Campbell KL (2017) Inactivation of thermogenic UCP1 as a historical contingency in multiple placental mammal clades. Sci Adv 3:e1602878CrossRefGoogle Scholar
  16. Gnad T, Scheibler S, von Kügelgen I, Scheele C, Kilić A, Glöde A, Hoffmann LS, Reverte-Salisa L, Horn P, Mutlu S, El-Tayeb A, Kranz M, Deuther-Conrad W, Brust P, Lidell ME, Betz MJ, Enerbäck S, Schrader J, Yegutkin GG, Müller CE, Pfeifer A (2014) Adenosine activates brown adipose tissue and recruits beige adipocytes via A2A receptors. Nature 516(7531):395–399CrossRefGoogle Scholar
  17. Golozoubova V, Hohtola E, Matthias A, Jacobsson A, Cannon B, Nedergaard J (2001) Only UCP1 can mediate adaptive nonshivering thermogenesis in the cold. FASEB J 15:2048–2050CrossRefGoogle Scholar
  18. Harms M, Seale P (2013) Brown and beige fat: development, function and therapeutic potential. Nat Med 19:1252–1263CrossRefGoogle Scholar
  19. Heaton GM, Wagenvoord RJ, Kemp A, Nicholls DG (1978) Brown-adipose-tissue mitochondria: photoaffinity labelling of the regulatory site of energy dissipation. Eur J Biochem 82:515–521CrossRefGoogle Scholar
  20. Heldmaier G (1971) Zitterfreie Wärmebildung und Körpergröße bei Säugetieren. Z Vergl Physiol 73:222–247CrossRefGoogle Scholar
  21. Herpin P, Damon M, Le Dividich J (2002) Development of thermoregulation and neonatal survival in pigs. Livest Prod Sci 78:25–45CrossRefGoogle Scholar
  22. Hou L, Shi J, Cao L, Xu G, Hu C, Wang C (2017a) Pig has no uncoupling protein 1. Biochem Biophys Res Commun 487:795–800CrossRefGoogle Scholar
  23. Hou L, Hu CY, Wang C (2017b) Pig has no brown adipose tissue. FASEB J 31:lb695CrossRefGoogle Scholar
  24. Hughes DA, Jastroch M, Stoneking M, Klingenspor M (2009) Molecular evolution of UCP1 and the evolutionary history of mammalian non-shivering thermogenesis. BMC Evol Biol 9:4CrossRefGoogle Scholar
  25. Ikeda K, Kang Q, Yoneshiro T, Camporez JP, Maki H, Homma M, Shinoda K, Chen Y, Lu X, Maretich P, Tajima K, Ajuwon KW, Soga T, Kajimura S (2017) UCP1-independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis. Nat Med 23:1454CrossRefGoogle Scholar
  26. Jastroch M, Andersson L (2015) When pigs fly, UCP1 makes heat. Mol Metab 4:359–362CrossRefGoogle Scholar
  27. Jastroch M, Wuertz S, Kloas W, Klingenspor M (2005) Uncoupling protein in fish uncovers an ancient evolutionary history of mammalian nonshivering thermogenesis. Physiol Genomics 22:150–156CrossRefGoogle Scholar
  28. Jastroch M, Buckingham JA, Helwig M, Klingenspor M, Brand MD (2007) Functional characterization of UCP1 in the common carp: uncoupling activity in liver mitochondria and cold-induced expression in the brain. J Comp Physiol B 177:743–752CrossRefGoogle Scholar
  29. Jastroch M, Withers KW, Taudien S, Frappell PB, Helwig M, Fromme T, Hirschberg V, Heldmaier G, McAllan BM, Firth BT, Burmester T, Platzer M, Klingenspor M (2008) Marsupial uncoupling protein 1 sheds light on the evolution of mammalian nonshivering thermogenesis. Physiol Genomics 32:161–169CrossRefGoogle Scholar
  30. Jastroch M, Oelkrug R, Keipert S (2018) Insights into brown adipose tissue evolution and fuction from non-model organisms. J Exp Biol 221:jeb169425CrossRefGoogle Scholar
  31. Kazak L, Chouchani ET, Stavrovskaya IG, Lu GZ, Jedrychowski MP, Egan DF, Kumari M, Kong X, Erickson BK, Szpyt J, Rosen ED, Murphy MP, Kristal BS, Gygi SP, Spiegelman BM (2017a) UCP1 deficiency causes brown fat respiratory chain depletion and sensitizes mitochondria to calcium overload-induced dysfunction. Proc Natl Acad Sci U S A 114(30):7981–7986CrossRefGoogle Scholar
  32. Kazak L, Chouchani ET, Lu GZ, Jedrychowski MP, Bare CJ, Mina AI, Kumari M, Zhang S, Vuckovic I, Laznik-Bogoslavski D, Dzeja P, Banks AS, Rosen ED, Spiegelman BM (2017b) Genetic depletion of adipocyte creatine metabolism inhibits diet-induced thermogenesis and drives obesity. Cell Metab 3:660–671CrossRefGoogle Scholar
  33. Keipert S, Jastroch M (2014) Brite/beige fat and UCP1 – is it thermogenesis? Biochim Biophys Acta Bioenerg 1837:1075–1082CrossRefGoogle Scholar
  34. Keipert S, Kutschke M, Ost M, Schwarzmayr T, van Schothorst EM, Lamp D, Brachthauser L, Hamp I, Mazibuko SE, Hartwig S, Lehr S, Graf E, Plettenburg O, Neff F, Tschöp MH, Jastroch M (2017) Long-term cold adaptation does not require FGF21 or UCP1. Cell Metab 26:437–446CrossRefGoogle Scholar
  35. Khailova LS, Prikhodko EA, Dedukhova VI, Mokhova EN, Popov VN, Skulachev VP (2006) Participation of ATP/ADP antiporter in oleate- and oleate hyperoxide-induced uncoupling suppressed by GDP and carboxyatractylate. Biochim Biophys Acta 1757:1324–1329CrossRefGoogle Scholar
  36. Laursen WJ, Mastrotto M, Pesta D, Funk OH, Goodman JB, Merriman DK, Ingolia N, Shulman GI, Bagriantsev SN, Gracheva EO (2015) Neuronal UCP1 expression suggests a mechanism for local thermogenesis during hibernation. Proc Natl Acad Sci U S A 112:1607–1612CrossRefGoogle Scholar
  37. Lin J, Cao C, Tao C, Ye R, Dong M, Zheng Q, Wang C, Jiang X, Yan C, Li K, Speakman JR, Wang Y, Jin W, Zhao J (2017) Cold adaptation in pigs depends on UCP3 in beige adipocytes. J Mol Cell Biol 9:364–375CrossRefGoogle Scholar
  38. Liu L, Zhang J, Rheindt FE, Lei F, Qu Y, Wang Y, Zhang Y, Sullivan C, Nie W, Wang J, Yang F, Chen J, Edwards SV, Meng J, Wu S (2017) Genomic evidence reveals a radiation of placental mammals uninterrupted by the KpG boundary. Proc Natl Acad Sci U S A 114:E7282–E7290CrossRefGoogle Scholar
  39. Long JZ, Svensson KJ, Bateman LA, Lin H, Kamenecka T, Lokurkar IA, Lou J, Rao RR, Chang MR, Jedrychowski MP, Paulo JA (2016) The secreted enzyme PM20D1 regulates lipidated amino acid uncouplers of mitochondria. Cell 14:424–435CrossRefGoogle Scholar
  40. Lovegrove BG (2012) The evolution of endothermy in Cenozoic mammals: a plesiomorphic-apomorphic continuum. Biol Rev Camb Philos Soc 87:218–162CrossRefGoogle Scholar
  41. Mailloux RJ, Harper ME (2011) Uncoupling proteins and the control of mitochondrial reactive oxygen species production. Free Radic Biol Med 51:1106–1115CrossRefGoogle Scholar
  42. van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, Schrauwen P, Teule GJ (2009) Cold-activated brown adipose tissue in healthy men. N Engl J Med 360:1500–1508CrossRefGoogle Scholar
  43. McGaugh S, Schwartz TS (2017) Here and there, but not everywhere: repeated loss of uncoupling protein 1 in amniotes. Biol Lett 13:20160749CrossRefGoogle Scholar
  44. Meredith RW, Janečka JE, Gatesy J, Ryder OA, Fisher CA, Teeling EC, Goodbla A, Eizirik E, Simão TLL, Stadler T, Rabosky DL (2011) Impacts of the cretaceous terrestrial revolution and KPg extinction on mammal diversification. Science 334:521–524CrossRefGoogle Scholar
  45. Meyer CW, Willershauser M, Jastroch M, Rourke BC, Fromme T, Oelkrug R, Heldmaier G, Klingenspor M (2012) Adaptive thermogeneisis and thermal conductance in wilde-type and UCP1-KO mice. Am J Physiol Regul Integr Comp Physiol 299:R1396–R1406CrossRefGoogle Scholar
  46. Mezentseva NV, Kumaratilake JS, Newman SA (2008) The brown adipocyte differentiation pathway in birds: an evolutionary road not taken. BMC Biol 6:17CrossRefGoogle Scholar
  47. Morrissette JM, Franck JP, Block BA (2003) Characterization of ryanodine receptor and Ca2+-ATPase isoforms in the thermogenic heater organ of blue marlin (Makaira nigricans). J Exp Biol 206:805–812CrossRefGoogle Scholar
  48. Mostyn A, Attig L, Larcher T, Dou S, Chavatte-Palmer P, Boukthir M, Gertler A, Djiane J, Symonds ME, Abdennebi-Najar L (2014) UCP1 is present in porcine adipose tissue and is responsive to postnatal leptin. J Endocrinol 223:M31–M38CrossRefGoogle Scholar
  49. Murakami M, Ohi M, Ishikawa S, Shirai M, Horiguchi H, Nishino Y, Funaba M (2015) Adaptive expression of uncoupling protein 1 in carp liver and kidney in response to changes in ambient temperature. Comp Biochem Physiol A Mol Integr Physiol 185:142–149CrossRefGoogle Scholar
  50. Mzilikazi N, Jastroch M, Meyer CW, Klingenspor M (2007) The molecular and biochemical basis of nonshivering thermogenesis in an African endemic mammal, Elephantulus myurus. Am J Physiol Regul Integr Comp Physiol 293:R2120–R2127CrossRefGoogle Scholar
  51. Nabben M, Shabalina IG, Moonen-Kornips E, van Beurden D, Schwrauwen P, Nedergaard J, Hoeks J (2011) Biochim Biophys Acta 1807:1095–1105Google Scholar
  52. Nedergaard J, Cannon B (2003) The “novel” “uncoupling” proteins UCP2 and UCP3: what do they really do? Pros and cons for suggested functions. Exp Physiol 88:65–84CrossRefGoogle Scholar
  53. Nedergaard J, Bengtsson T, Cannon B (2007) Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab 293:E444–E452CrossRefGoogle Scholar
  54. Nicol SC, Andersen NA, Arruda AP, Ruf T (2009) Rewarming rates of two large hibernators: comparison of a monotreme and a eutherian. J Therm Biol 34:155–159CrossRefGoogle Scholar
  55. O’leary MA, Bloch JI, Flynn JJ, Gaudin TJ, Giallombardo A, Giannini NP, Goldberg SL, Kraatz BP, Luo ZX, Meng J, Ni X, Novacek MJ, Perini FA, Randall ZS, Rougier GW, Sargis EJ, Silcox MT, Simmons NB, Spaulding M, Velazco PM, Weksler M, Wible JR, Cirranello AL (2013) The placental mammal ancestor and the post-K-Pg radiation of placentals. Science 339:662–667CrossRefGoogle Scholar
  56. O'Brien CL, Robinson SA, Pancost RD, Damsté JSS, Schouten S, Lunt DJ, Alsenz H, Bornemann A, Bottini C, Brassell SC, Farnsworth A, Forster A, Huber BT, Inglis GN, Jenkyns HC, Linner C, Littler K, Markwick P, McAnena A, Mutterlos J, Naafs DA, Püttman W, Sluijs A, van Helmond NAGM, Vellekoop J, Wagner T, Wrobel NE (2017) Cretaceous sea-surface temperature evolution: constraints from TEX86 and planktonic foraminiferal oxygen isotopes. Earth Sci Rev 172:224–247CrossRefGoogle Scholar
  57. Oelkrug R, Kutschke M, Meyer CW, Heldmaier G, Jastroch M (2010) Uncoupling protein 1 decreases superoxide production in brown adipose tissue mitochondria. J Biol Chem 285:21961–21968CrossRefGoogle Scholar
  58. Oelkrug R, Heldmaier G, Meyer CW (2011) Torpor patterns, arousal rates, and temporal organization of torpor entry in wildtype and UCP1-ablated mice. J Comp Physiol B 181:137–145CrossRefGoogle Scholar
  59. Oelkrug R, Exner NGC, Exner C, Lee Y, Ganjam GK, Kutschke M, Müller S, Stöhr S, Tschöp MH, Crichton PG, Heldmaier G, Jastroch M, Meyer CW (2013) Brown fat in a protoendothermic mammal fuels eutherian evolution. Nat Commun 4:2140CrossRefGoogle Scholar
  60. Oelkrug R, Polymeropoulos ET, Jastroch M (2015) Brown adipose tissue: physiological function and evolutionary significance. J Comp Physiol B 185:587–606CrossRefGoogle Scholar
  61. Okla M, Ha JH, Temel RE, Chung S (2015) BMP7 drives human adipogenic stem cells into metabolically active beige adipocytes. Lipids 50:111–120CrossRefGoogle Scholar
  62. Polymeropoulos ET, Jastroch M, Frappell PB (2012) Absence of adaptive nonshivering thermogenesis in a marsupial, the fat-tailed dunnart (Sminthopsis crassicaudata). J Comp Physiol B 182:393–401CrossRefGoogle Scholar
  63. Raimbault S, Dridi S, Denjean F, Lachuer J, Couplan E, Bouillaud F, Bordas A, Duchamp C, Taouis M, Ricquier D (2001) An uncoupling protein homologue putatively involved in facultative muscle thermogenesis in birds. Biochem J 353:441–444CrossRefGoogle Scholar
  64. Ricquier D, Kader JC (1976) Mitochondrial protein alteration in active brown fat: a sodium dodecyl sulfate-polyacrylamide gel electrophoretic study. Biochem Biophys Res Commun 73:577–583CrossRefGoogle Scholar
  65. Roberts LD, Boström P, O’Sullivan JF, Schinzel RT, Lewis GD, Dejam A, Lee YK, Palma MJ, Calhoun S, Georgiadi A, Chen MH, Ramachandran VS, Larson MG, Bouchard C, Rankinen T, Souza AL, Clish CB, Wang TJ, Estall JL, Soukas AA, Cowan CA, Spiegelman BM, Gerszten RE (2014) β-Aminoisobutyric acid induces browning of white fat and hepatic β-oxidation and is inversely correlated with cardiometabolic risk factors. Cell Metab 19:96–108CrossRefGoogle Scholar
  66. Rousset S, Alves-Guerra MC, Mozo J, Miroux B, Cassard-Doulcier AM, Bouillaud F, Ricquier D (2004) The biology of mitochondrial uncoupling proteins. Diabetes 53:S130–S135CrossRefGoogle Scholar
  67. Rowlatt U, Mrosovsky N, English A (1971) A comparative survey of brown fat in the neck and axilla of mammals at birth. Biol Neonate 17:53–83CrossRefGoogle Scholar
  68. Saito S, Saito CT, Shingai R (2008) Adaptive evolution of the uncoupling protein 1 gene contributed to the acquisition of novel nonshivering thermogenesis in ancestral eutherian mammals. Gene 408:37–44CrossRefGoogle Scholar
  69. Shabalina IG, Hoeks J, Kramarova TV, Schrauwen P, Cannon B, Nedergaard J (2010) Cold tolerance of UCP1-ablated mice: a skeletal muscle mitochondria switch toward lipid oxidation with marked UCP3 up-regulation not associated with increased basal, fatty acid- or ROS-induced uncoupling or enhanced GDP effects. Biochim Biophys Acta 1797:968–980CrossRefGoogle Scholar
  70. Shin H, Ma Y, Chanturiya T, Cao Q, Wang Y, Kadegowda AK, Jackson R, Rumore D, Xue B, Shi H, Gavrilova O (2017) Lipolysis in brown adipocytes is not essential for cold-induced thermogenesis in mice. Cell Metab 26:764–777CrossRefGoogle Scholar
  71. Springer MS, Emerling CA, Meredith RW, Janecka JE, Eizirik E, Murphy WJ (2017) Waking the undead: implications of a soft explosive model for the timing of placental mammal diversification. Mol Phylogenet Evol 106:86–102CrossRefGoogle Scholar
  72. Talbot DA, Duchamp C, Rey B, Hanuise N, Rouanet JL, Sibille B, Brand MD (2004) Uncoupling protein and ATP/ADP carrier increase mitochondrial proton conductance after cold adaptation of king penguins. J Physiol 558:123–135CrossRefGoogle Scholar
  73. Ukropec J, Anunciado RP, Ravussin Y, Hulver MW, Kozak LP (2006) UCP1-independent thermogenesis in white adipose tissue of cold-acclimated Ucp1-/- mice. J Biol Chem 281(42):31894–31908. Epub 2006 Aug 16CrossRefGoogle Scholar
  74. Vianna CR, Hagen T, Zhang CY, Bachman E, Boss O, Gereben B, Moriscot AS, Lowell BB, Bicudo JE, Bianco AC (2001) Cloning and functional characterization of an uncoupling protein homolog in hummingbirds. Physiol Genomics 5:137–145CrossRefGoogle Scholar
  75. Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, Taittonen M, Laine J, Savisto NJ, Enerbäck S, Nuutila P (2009) Functional brown adipose tissue in healthy adults. N Engl J Med 360:1518–1525CrossRefGoogle Scholar
  76. Wang Q, Zhang M, Xu M, Gu W, Xi Y, Qi L, Li B, Wang W (2015) Brown adipose tissue activation is inversely related to central obesity and metabolic parameters in adult human. PLoS One 10:e0123795CrossRefGoogle Scholar
  77. Wen ZY, Liang XF, He S, Li L, Shen D, Tao YX (2015) Molecular cloning and tissue expression of uncoupling protein 1, 2 and 3 genes in Chinese perch (Siniperca chuatsi). Comp Biochem Physiol B Biochem Mol Biol 185:24–33CrossRefGoogle Scholar
  78. Xue R, Wan Y, Zhang S, Zhang Q, Ye H, Li Y (2014) Role of bone morphogenetic protein 4 in the differentiation of brown fat-like adipocytes. Am J Physiol Endocrinol Metab 306:E363–E372CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Michael J. Gaudry
    • 1
  • Kevin L. Campbell
    • 1
  • Martin Jastroch
    • 2
    • 3
    Email author
  1. 1.Department of Biological SciencesUniversity of ManitobaWinnipegCanada
  2. 2.Institute for Diabetes and ObesityHelmholtz Diabetes Center at Helmholtz Zentrum MünchenNeuherbergGermany
  3. 3.German Center for Diabetes Research (DZD)München-NeuherbergGermany

Personalised recommendations