Resistance to Hormonal Therapy in Prostate Cancer

  • Alfredo BerrutiEmail author
  • Alberto Dalla Volta
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 249)


Several therapeutic strategies are actually available in the management of prostate cancer: Targeting the androgen receptor (AR) is the goal both for initial androgen deprivation therapy (ADT) and second-generation androgen ablative agents (abiraterone and enzalutamide). Chemotherapy with taxanes, administered upon progression or as first line approach in association with ADT, is another therapeutic option. Unfortunately, none of these therapies is curative and patients are destined to develop a resistant phenotype.

Progression to ADT leads to the attainment of a castration resistant disease whose mechanisms remain incompletely understood. Reactivation of AR has been shown to occur and second-generation of AR targeting drugs are usually prescribed. Upon progression to these agents AR signaling still remains the primary driver although it often becomes ligand independent, since it can be either restored through mutations on the ligand binding domain and/or formation of AR splicing variants or by passed through a cross talk with other oncogenic signaling pathways.

AR-independent signaling pathways may represent additional mechanisms underlying castration resistant progression. It is clear that castration resistant prostate cancer is a group of diverse diseases and new treatment paradigms need to be developed.


Androgen receptor splice variant Castration resistant prostate cancer Endocrine therapy resistance 


  1. Antonarakis ES, Lu C, Wang H et al (2014) Ar-v7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med 371(11):1028–1038PubMedPubMedCentralCrossRefGoogle Scholar
  2. Antonarakis ES, Lu C, Luber B et al (2015) Androgen receptor splice variant 7 and efficacy of taxane chemotherapy in patients with metastatic castration-resistant prostate cancer. JAMA Oncol 1(5):582–591PubMedPubMedCentralCrossRefGoogle Scholar
  3. Arora VK, Schenkein E, Murali R et al (2013) Glucocorticoid receptor confers resistance to antiandrogens by bypassing androgen receptor blockade. Cell 155(6):1309–1322PubMedPubMedCentralCrossRefGoogle Scholar
  4. Azad AA, Volik SV, Wyatt AW et al (2015) Androgen receptor gene aberrations in circulating cell-free DNA: biomarkers of therapeutic resistance in castration-resistant prostate cancer. Clin Cancer Res 21(10):2315–2324PubMedCrossRefGoogle Scholar
  5. Beltran H, Prandi D, Mosquera JM et al (2016) Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat Med 22(3):298–305PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bertaglia V, Tucci M, Fiori C et al (2013) Effects of serum testosterone levels after 6 months of androgen deprivation therapy on the outcome of patients with prostate cancer. Clin Genitourin Cancer 11(3):325–330.e1PubMedCrossRefGoogle Scholar
  7. Carreira S, Romanel A, Goodall J et al (2014) Tumor clone dynamics in lethal prostate cancer. Sci Transl Med 6(254):254ra125PubMedPubMedCentralCrossRefGoogle Scholar
  8. Chiang YT, Wang K, Fazli L et al (2014) Gata2 as a potential metastasis-driving gene in prostate cancer. Oncotarget 5(2):451–461PubMedPubMedCentralCrossRefGoogle Scholar
  9. Cho E, Montgomery RB, Mostaghel EA (2014) Minireview: Slco and abc transporters: a role for steroid transport in prostate cancer progression. Endocrinology 155(11):4124–4132PubMedPubMedCentralCrossRefGoogle Scholar
  10. Cornford P, Bellmunt J, Bolla M, Briers E, De Santis M, Gross T, Henry AM, Joniau S, Lam TB, Mason MD, van der Poel HG, van der Kwast TH, Rouvière O, Wiegel T, Mottet N (2017) Eau-estro-siog guidelines on prostate cancer. Part II: Treatment of relapsing, metastatic, and castration-resistant prostate cancer. Eur Urol 71(4):630–642. doi: 10.1016/j.eururo.2016.08.002 PubMedCrossRefGoogle Scholar
  11. Day KC, Hiles GL, Kozminsky M et al (2017) Her2 and egfr overexpression support metastatic progression of prostate cancer to bone. Cancer Res 77(1):74–85PubMedCrossRefGoogle Scholar
  12. Debes JD, Schmidt LJ, Huang H, Tindall DJ (2002) P300 mediates androgen-independent transactivation of the androgen receptor by interleukin 6. Cancer Res 62(20):5632–5636PubMedGoogle Scholar
  13. Dehm SM, Schmidt LJ, Heemers HV, Vessella RL, Tindall DJ (2008) Splicing of a novel androgen receptor exon generates a constitutively active androgen receptor that mediates prostate cancer therapy resistance. Cancer Res 68(13):5469–5477PubMedPubMedCentralCrossRefGoogle Scholar
  14. Duff J, Mcewan IJ (2005) Mutation of histidine 874 in the androgen receptor ligand-binding domain leads to promiscuous ligand activation and altered p160 coactivator interactions. Mol Endocrinol 19(12):2943–2954PubMedCrossRefGoogle Scholar
  15. Efstathiou E, Titus M, Wen S et al (2015) Molecular characterization of enzalutamide-treated bone metastatic castration-resistant prostate cancer. Eur Urol 67(1):53–60PubMedCrossRefGoogle Scholar
  16. Gottlieb B, Beitel LK, Wu JH, Trifiro M (2004) The androgen receptor gene mutations database (ardb): 2004 update. Hum Mutat 23(6):527–533PubMedCrossRefGoogle Scholar
  17. Grasso CS, Wu YM, Robinson DR et al (2012) The mutational landscape of lethal castration-resistant prostate cancer. Nature 487(7406):239–243PubMedPubMedCentralCrossRefGoogle Scholar
  18. Grindstad T, Andersen S, Al-Saad S et al (2015) High progesterone receptor expression in prostate cancer is associated with clinical failure. PLoS One 10(2):e0116691PubMedPubMedCentralCrossRefGoogle Scholar
  19. Hearn JW, Abuali G, Reichard CA et al (2016) Hsd3b1 and resistance to androgen-deprivation therapy in prostate cancer: a retrospective, multicohort study. Lancet Oncol 17(10):1435–1444PubMedPubMedCentralCrossRefGoogle Scholar
  20. Hornberg E, Ylitalo EB, Crnalic S et al (2011) Expression of androgen receptor splice variants in prostate cancer bone metastases is associated with castration-resistance and short survival. PLoS One 6(4):e19059PubMedPubMedCentralCrossRefGoogle Scholar
  21. Hu R, Dunn TA, Wei S et al (2009) Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer. Cancer Res 69(1):16–22PubMedPubMedCentralCrossRefGoogle Scholar
  22. Hu R, Isaacs WB, Luo J (2011) A snapshot of the expression signature of androgen receptor splicing variants and their distinctive transcriptional activities. Prostate 71(15):1656–1667PubMedPubMedCentralCrossRefGoogle Scholar
  23. Joseph JD, Lu N, Qian J et al (2013) A clinically relevant androgen receptor mutation confers resistance to second-generation antiandrogens enzalutamide and arn-509. Cancer Discov 3(9):1020–1029PubMedCrossRefGoogle Scholar
  24. Karantanos T, Evans CP, Tombal B, Thompson TC, Montironi R, Isaacs WB (2015) Understanding the mechanisms of androgen deprivation resistance in prostate cancer at the molecular level. Eur Urol 67(3):470–479PubMedCrossRefGoogle Scholar
  25. Khera M, Crawford D, Morales A, Salonia A, Morgentaler A (2014) A new era of testosterone and prostate cancer: from physiology to clinical implications. Eur Urol 65(1):115–123PubMedCrossRefGoogle Scholar
  26. Koh E, Noda T, Kanaya J, Namiki M (2002) Differential expression of 17beta-hydroxysteroid dehydrogenase isozyme genes in prostate cancer and noncancer tissues. Prostate 53(2):154–159PubMedCrossRefGoogle Scholar
  27. Korpal M, Korn JM, Gao X et al (2013) An f876l mutation in androgen receptor confers genetic and phenotypic resistance to mdv3100 (enzalutamide). Cancer Discov 3(9):1030–1043PubMedCrossRefGoogle Scholar
  28. Labrie F (2011) Blockade of testicular and adrenal androgens in prostate cancer treatment. Nat Rev Urol 8(2):73–85PubMedCrossRefGoogle Scholar
  29. Lee E, Madar A, David G, Garabedian MJ, Dasgupta R, Logan SK (2013) Inhibition of androgen receptor and beta-catenin activity in prostate cancer. Proc Natl Acad Sci U S A 110(39):15710–15715PubMedPubMedCentralCrossRefGoogle Scholar
  30. Li Z, Bishop AC, Alyamani M et al (2015) Conversion of abiraterone to d4a drives anti-tumour activity in prostate cancer. Nature 523(7560):347–351PubMedPubMedCentralCrossRefGoogle Scholar
  31. Liu H, An X, Li S, Wang Y, Li J, Liu H (2015) Interaction mechanism exploration of r-bicalutamide/s-1 with wt/w741l ar using molecular dynamics simulations. Mol BioSyst 11(12):3347–3354PubMedCrossRefGoogle Scholar
  32. Loblaw DA, Virgo KS, Nam R et al (2007) Initial hormonal management of androgen-sensitive metastatic, recurrent, or progressive prostate cancer: 2006 update of an american society of clinical oncology practice guideline. J Clin Oncol 25(12):1596–1605PubMedCrossRefGoogle Scholar
  33. Marcelli M, Ittmann M, Mariani S et al (2000) Androgen receptor mutations in prostate cancer. Cancer Res 60(4):944–949PubMedGoogle Scholar
  34. Mateo J, Carreira S, Sandhu S et al (2015) DNA-repair defects and olaparib in metastatic prostate cancer. N Engl J Med 373(18):1697–1708PubMedPubMedCentralCrossRefGoogle Scholar
  35. Mateo J, Boysen G, Barbieri CE et al (2017) DNA repair in prostate cancer: biology and clinical implications. Eur Urol 71(3):417–425PubMedCrossRefGoogle Scholar
  36. Montgomery RB, Mostaghel EA, Vessella R et al (2008) Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth. Cancer Res 68(11):4447–4454PubMedPubMedCentralCrossRefGoogle Scholar
  37. Mostaghel EA (2014) Abiraterone in the treatment of metastatic castration-resistant prostate cancer. Cancer Manag Res 6:39–51PubMedPubMedCentralCrossRefGoogle Scholar
  38. Nishiyama T, Hashimoto Y, Takahashi K (2004) The influence of androgen deprivation therapy on dihydrotestosterone levels in the prostatic tissue of patients with prostate cancer. Clin Cancer Res 10(21):7121–7126PubMedCrossRefGoogle Scholar
  39. Penning TM (2015) Mechanisms of drug resistance that target the androgen axis in castration resistant prostate cancer (crpc). J Steroid Biochem Mol Biol 153:105–113PubMedPubMedCentralCrossRefGoogle Scholar
  40. Robinson D, Van Allen EM, Wu YM et al (2015) Integrative clinical genomics of advanced prostate cancer. Cell 161(5):1215–1228PubMedPubMedCentralCrossRefGoogle Scholar
  41. Ryan CJ, Molina A, Li J et al (2013) Serum androgens as prognostic biomarkers in castration-resistant prostate cancer: results from an analysis of a randomized phase iii trial. J Clin Oncol 31(22):2791–2798PubMedPubMedCentralCrossRefGoogle Scholar
  42. Schalken J, Fitzpatrick JM (2016) Enzalutamide: targeting the androgen signalling pathway in metastatic castration-resistant prostate cancer. BJU Int 117(2):215–225PubMedCrossRefGoogle Scholar
  43. Scher HI, Lu D, Schreiber NA et al (2016) Association of ar-v7 on circulating tumor cells as a treatment-specific biomarker with outcomes and survival in castration-resistant prostate cancer. JAMA Oncol 2(11):1441–1449PubMedPubMedCentralCrossRefGoogle Scholar
  44. Schweizer L, Rizzo CA, Spires TE et al (2008) The androgen receptor can signal through wnt/beta-catenin in prostate cancer cells as an adaptation mechanism to castration levels of androgens. BMC Cell Biol 9:4PubMedPubMedCentralCrossRefGoogle Scholar
  45. Steinestel J, Luedeke M, Arndt A, Schnoeller TJ, Lennerz JK, Wurm C, Maier C, Cronauer MV, Steinestel K, Schrader AJ, Steinestel J, Luedeke M, Arndt A, Schnoeller TJ, Lennerz JK, Wurm C, Maier C, Cronauer MV, Steinestel K, Schrader AJ (2015) Detecting predictive androgen receptor modifications in circulating prostate cancer cells. Oncotarget. doi: 10.18632/oncotarget.3925 PubMedPubMedCentralCrossRefGoogle Scholar
  46. Steketee K, Timmerman L, Ziel-Van Der Made AC, Doesburg P, Brinkmann AO, Trapman J (2002) Broadened ligand responsiveness of androgen receptor mutants obtained by random amino acid substitution of h874 and mutation hot spot t877 in prostate cancer. Int J Cancer 100(3):309–317PubMedCrossRefGoogle Scholar
  47. Sun S, Sprenger CC, Vessella RL et al (2010) Castration resistance in human prostate cancer is conferred by a frequently occurring androgen receptor splice variant. J Clin Invest 120(8):2715–2730PubMedPubMedCentralCrossRefGoogle Scholar
  48. Taplin ME, Bubley GJ, Ko YJ et al (1999) Selection for androgen receptor mutations in prostate cancers treated with androgen antagonist. Cancer Res 59(11):2511–2515PubMedGoogle Scholar
  49. Taplin ME, Montgomery B, Logothetis CJ et al (2014) Intense androgen-deprivation therapy with abiraterone acetate plus leuprolide acetate in patients with localized high-risk prostate cancer: results of a randomized phase ii neoadjuvant study. J Clin Oncol 32(33):3705–3715PubMedPubMedCentralCrossRefGoogle Scholar
  50. Taylor BS, Schultz N, Hieronymus H et al (2010) Integrative genomic profiling of human prostate cancer. Cancer Cell 18(1):11–22PubMedPubMedCentralCrossRefGoogle Scholar
  51. Terry S, Beltran H (2014) The many faces of neuroendocrine differentiation in prostate cancer progression. Front Oncol 4:60PubMedPubMedCentralCrossRefGoogle Scholar
  52. Urushibara M, Ishioka J, Hyochi N et al (2007) Effects of steroidal and non-steroidal antiandrogens on wild-type and mutant androgen receptors. Prostate 67(8):799–807PubMedCrossRefGoogle Scholar
  53. Veldscholte J, Berrevoets CA, Brinkmann AO, Grootegoed JA, Mulder E (1992) Anti-androgens and the mutated androgen receptor of lncap cells: differential effects on binding affinity, heat-shock protein interaction, and transcription activation. Biochemistry 31(8):2393–2399PubMedCrossRefGoogle Scholar
  54. Venkitaraman R, Thomas K, Huddart RA, Horwich A, Dearnaley DP, Parker CC (2008) Efficacy of low-dose dexamethasone in castration-refractory prostate cancer. BJU Int 101(4):440–443PubMedGoogle Scholar
  55. Wan X, Liu J, Lu JF et al (2012) Activation of beta-catenin signaling in androgen receptor-negative prostate cancer cells. Clin Cancer Res 18(3):726–736PubMedPubMedCentralCrossRefGoogle Scholar
  56. Wang G, Wang J, Sadar MD (2008) Crosstalk between the androgen receptor and beta-catenin in castrate-resistant prostate cancer. Cancer Res 68(23):9918–9927PubMedPubMedCentralCrossRefGoogle Scholar
  57. Wang HT, Yao YH, Li BG, Tang Y, Chang JW, Zhang J (2014) Neuroendocrine prostate cancer (nepc) progressing from conventional prostatic adenocarcinoma: factors associated with time to development of nepc and survival from nepc diagnosis-a systematic review and pooled analysis. J Clin Oncol 32(30):3383–3390PubMedCrossRefGoogle Scholar
  58. Watson PA, Chen YF, Balbas MD et al (2010) Constitutively active androgen receptor splice variants expressed in castration-resistant prostate cancer require full-length androgen receptor. Proc Natl Acad Sci U S A 107(39):16759–16765PubMedPubMedCentralCrossRefGoogle Scholar
  59. Watson PA, Arora VK, Sawyers CL (2015) Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat Rev Cancer 15(12):701–711PubMedPubMedCentralCrossRefGoogle Scholar
  60. Yang M, Xie W, Mostaghel E et al (2011) Slco2b1 and slco1b3 may determine time to progression for patients receiving androgen deprivation therapy for prostate cancer. J Clin Oncol 29(18):2565–2573PubMedPubMedCentralCrossRefGoogle Scholar
  61. Zhao JC, Fong KW, Jin HJ, Yang YA, Kim J, Yu J (2016) Foxa1 acts upstream of gata2 and ar in hormonal regulation of gene expression. Oncogene 35(33):4335–4344PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, Medical OncologyUniversity of Brescia at ASST-Spedali CiviliBresciaItaly
  2. 2.Oncologia MedicaASST-Spedali CiviliBresciaItaly
  3. 3.Department of Oncology, Verona Comprehensive Cancer NetworkG.B. Rossi Hospital, University of VeronaVeronaItaly

Personalised recommendations