Advertisement

Mechanisms of Drug Resistance in Melanoma

  • Matthew Winder
  • Amaya VirósEmail author
Chapter
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 249)

Abstract

Metastatic melanoma is associated with poor outcome and is largely refractory to the historic standard of care. In recent years, the development of targeted small-molecule inhibitors and immunotherapy has revolutionised the care and improved the overall survival of these patients. Therapies targeting BRAF and MEK to block the mitogen-activated protein kinase (MAPK) pathway were the first to show unprecedented clinical responses. Following these encouraging results, antibodies targeting immune checkpoint inhibition molecules cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), programmed cell death (PD)-1, and PD-ligand1(PD-L1) demonstrated sustained tumour regression in a significant subset of patients by enabling an anti-tumour immunologic response. Despite these landmark changes in practice, the majority of patients are either intrinsically resistant or rapidly acquire resistance to MAPK pathway inhibitors and immune checkpoint blockade treatment. The lack of response can be driven by mutations and non-mutational events in tumour cells, as well as by changes in the surrounding tumour microenvironment. Common resistance mechanisms bypass the dependence of tumour cells on initial MAPK pathway driver mutations during targeted therapy, and permit evasion of the host immune system to allow melanoma growth and survival following immunotherapy. This highlights the requirement for personalised treatment regimens that take into account patient-specific genetic and immunologic characteristics. Here we review the mechanisms by which melanomas display intrinsic resistance or acquire resistance to targeted therapy and immunotherapy.

Keywords

Acquired resistance BRAF inhibitor Checkpoint inhibitor Immunotherapy Intrinsic resistance MAPK pathway MEK inhibitor Melanoma Targeted therapy 

References

  1. Akbay EA et al (2013) Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors. Cancer Discov 3:1355–1363. doi: 10.1158/2159-8290.CD-13-0310 CrossRefPubMedGoogle Scholar
  2. Albino AP et al (1989) Analysis of Ras oncogenes in malignant melanoma and precursor lesions: correlation of point mutations with differentiation phenotype. Oncogene 4:1363–1374PubMedGoogle Scholar
  3. Ascierto PA et al (2016) Cobimetinib combined with vemurafenib in advanced BRAF(V600)-mutant melanoma (coBRIM): updated efficacy results from a randomised, double-blind, phase 3 trial. Lancet Oncol 17:1248–1260. doi: 10.1016/S1470-2045(16)30122-X CrossRefPubMedGoogle Scholar
  4. Atefi M et al (2014) Effects of MAPK and PI3K pathways on PD-L1 expression in melanoma. Clin Cancer Res 20:3446–3457. doi: 10.1158/1078-0432.CCR-13-2797 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Balch CM et al (2009) Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol 27:6199–6206. doi: 10.1200/JCO.2009.23.4799 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bald T et al (2014) Immune cell-poor melanomas benefit from PD-1 blockade after targeted type I IFN activation. Cancer Discov 4:674–687. doi: 10.1158/2159-8290.CD-13-0458 CrossRefPubMedGoogle Scholar
  7. Brahmer JR et al (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366:2455–2465. doi: 10.1056/NEJMoa1200694 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cancer Genome Atlas Network (2015) Genomic classification of cutaneous melanoma. Cell 161:1681–1696. doi: 10.1016/j.cell.2015.05.044 CrossRefGoogle Scholar
  9. Cerezo M et al (2016) Compounds triggering ER stress exert anti-melanoma effects and overcome BRAF inhibitor resistance. Cancer Cell 30:183. doi: 10.1016/j.ccell.2016.06.007 CrossRefPubMedGoogle Scholar
  10. Chang YM et al (2009) Sun exposure and melanoma risk at different latitudes: a pooled analysis of 5700 cases and 7216 controls. Int J Epidemiol 38:814–830. doi: 10.1093/ije/dyp166 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chapman PB et al (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364:2507–2516. doi: 10.1056/NEJMoa1103782 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Conde-Perez A, Larue L (2014) Human relevance of NRAS/BRAF mouse melanoma models. Eur J Cell Biol 93:82–86. doi: 10.1016/j.ejcb.2013.10.010 CrossRefPubMedGoogle Scholar
  13. Curtin JA et al (2005) Distinct sets of genetic alterations in melanoma. N Engl J Med 353:2135–2147. doi: 10.1056/NEJMoa050092 CrossRefPubMedGoogle Scholar
  14. Dankort D et al (2009) Braf(V600E) cooperates with Pten loss to induce metastatic melanoma. Nat Genet 41:544–552. doi: 10.1038/ng.356 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Davies H et al (2002) Mutations of the BRAF gene in human cancer. Nature 417:949–954. doi: 10.1038/nature00766 CrossRefPubMedGoogle Scholar
  16. Dhomen N et al (2009) Oncogenic Braf induces melanocyte senescence and melanoma in mice. Cancer Cell 15:294–303. doi: 10.1016/j.ccr.2009.02.022 CrossRefPubMedGoogle Scholar
  17. Farrar MA, Alberol-Ila J, Perlmutter RM (1996) Activation of the Raf-1 kinase cascade by coumermycin-induced dimerization. Nature 383:178–181. doi: 10.1038/383178a0 CrossRefPubMedGoogle Scholar
  18. Feng Y et al (2013) Inhibition of melanoma development in the Nras((Q61K)) ::Ink4a(−/−) mouse model by the small molecule BI-69A11. Pigment Cell Melanoma Res 26:136–142. doi: 10.1111/pcmr.12033 CrossRefPubMedGoogle Scholar
  19. Ferlay J et al (2013) Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer 49:1374–1403. doi: 10.1016/j.ejca.2012.12.027 CrossRefPubMedGoogle Scholar
  20. Fey D, Croucher DR, Kolch W, Kholodenko BN (2012) Crosstalk and signaling switches in mitogen-activated protein kinase cascades. Front Physiol 3:355. doi: 10.3389/fphys.2012.00355 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Flaherty KT et al (2012) Improved survival with MEK inhibition in BRAF-mutated melanoma. N Engl J Med 367:107–114. doi: 10.1056/NEJMoa1203421 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Fruman DA, Rommel C (2014) PI3K and cancer: lessons, challenges and opportunities. Nat Rev Drug Discov 13:140–156. doi: 10.1038/nrd4204 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Gilchrest BA, Eller MS, Geller AC, Yaar M (1999) The pathogenesis of melanoma induced by ultraviolet radiation. N Engl J Med 340:1341–1348. doi: 10.1056/NEJM199904293401707 CrossRefPubMedGoogle Scholar
  24. Girotti MR et al (2015) Paradox-breaking RAF inhibitors that also target SRC are effective in drug-resistant BRAF mutant melanoma. Cancer Cell 27:85–96. doi: 10.1016/j.ccell.2014.11.006 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Goel VK et al (2009) Melanocytic nevus-like hyperplasia and melanoma in transgenic BRAFV600E mice. Oncogene 28:2289–2298. doi: 10.1038/onc.2009.95 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Gray-Schopfer VC, Karasarides M, Hayward R, Marais R (2007) Tumor necrosis factor-alpha blocks apoptosis in melanoma cells when BRAF signaling is inhibited. Cancer Res 67:122–129. doi: 10.1158/0008-5472.CAN-06-1880 CrossRefGoogle Scholar
  27. Greger JG et al (2012) Combinations of BRAF, MEK, and PI3K/mTOR inhibitors overcome acquired resistance to the BRAF inhibitor GSK2118436 dabrafenib, mediated by NRAS or MEK mutations. Mol Cancer Ther 11:909–920. doi: 10.1158/1535-7163.MCT-11-0989 CrossRefPubMedGoogle Scholar
  28. Haq R et al (2013) BCL2A1 is a lineage-specific antiapoptotic melanoma oncogene that confers resistance to BRAF inhibition. Proc Natl Acad Sci U S A 110:4321–4326. doi: 10.1073/pnas.1205575110 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hauschild A et al (2012) Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet 380:358–365. doi: 10.1016/S0140-6736(12)60868-X CrossRefGoogle Scholar
  30. Heidorn SJ et al (2010) Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell 140:209–221. doi: 10.1016/j.cell.2009.12.040 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Hirata E et al (2015) Intravital imaging reveals how BRAF inhibition generates drug-tolerant microenvironments with high integrin beta1/FAK signaling. Cancer Cell 27:574–588. doi: 10.1016/j.ccell.2015.03.008 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Hodi FS et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723. doi: 10.1056/NEJMoa1003466 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Hodis E et al (2012) A landscape of driver mutations in melanoma. Cell 150:251–263. doi: 10.1016/j.cell.2012.06.024 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Holderfield M, Deuker MM, McCormick F, McMahon M (2014) Targeting RAF kinases for cancer therapy: BRAF-mutated melanoma and beyond. Nat Rev Cancer 14:455–467. doi: 10.1038/nrc3760 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Huang YH et al (2015) CEACAM1 regulates TIM-3-mediated tolerance and exhaustion. Nature 517:386–390. doi: 10.1038/nature13848 CrossRefPubMedGoogle Scholar
  36. Hugo W et al (2015) Non-genomic and immune evolution of melanoma acquiring MAPKi resistance. Cell 162:1271–1285. doi: 10.1016/j.cell.2015.07.061 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Hugo W et al (2017) Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell 168:542. doi: 10.1016/j.cell.2017.01.010 CrossRefPubMedGoogle Scholar
  38. Johannessen CM et al (2010) COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature 468:968–972. doi: 10.1038/nature09627 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Johannessen CM et al (2013) A melanocyte lineage program confers resistance to MAP kinase pathway inhibition. Nature 504:138–142. doi: 10.1038/nature12688 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Katz ME, McCormick F (1997) Signal transduction from multiple Ras effectors. Curr Opin Genet Dev 7:75–79CrossRefGoogle Scholar
  41. Kaufman HL et al (2013) The Society for Immunotherapy of Cancer consensus statement on tumour immunotherapy for the treatment of cutaneous melanoma. Nat Rev Clin Oncol 10:588–598. doi: 10.1038/nrclinonc.2013.153 CrossRefPubMedGoogle Scholar
  42. Kaur A et al (2016) sFRP2 in the aged microenvironment drives melanoma metastasis and therapy resistance. Nature 532:250–254. doi: 10.1038/nature17392 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Kemper K et al (2016) BRAF(V600E) kinase domain duplication identified in therapy-refractory melanoma patient-derived xenografts. Cell Rep 16:263–277. doi: 10.1016/j.celrep.2016.05.064 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Konieczkowski DJ et al (2014) A melanoma cell state distinction influences sensitivity to MAPK pathway inhibitors. Cancer Discov 4:816–827. doi: 10.1158/2159-8290.CD-13-0424 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Krauthammer M et al (2015) Exome sequencing identifies recurrent mutations in NF1 and RASopathy genes in sun-exposed melanomas. Nat Genet 47:996–1002. doi: 10.1038/ng.3361 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Landsberg J et al (2012) Melanomas resist T-cell therapy through inflammation-induced reversible dedifferentiation. Nature 490:412–416. doi: 10.1038/nature11538 CrossRefPubMedGoogle Scholar
  47. Larkin J et al (2014) Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. N Engl J Med 371:1867–1876. doi: 10.1056/NEJMoa1408868 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Levy C, Khaled M, Fisher DE (2006) MITF: master regulator of melanocyte development and melanoma oncogene. Trends Mol Med 12:406–414. doi: 10.1016/j.molmed.2006.07.008 CrossRefPubMedGoogle Scholar
  49. Li G et al (2003) Function and regulation of melanoma-stromal fibroblast interactions: when seeds meet soil. Oncogene 22:3162–3171. doi: 10.1038/sj.onc.1206455 CrossRefPubMedGoogle Scholar
  50. Lito P et al (2012) Relief of profound feedback inhibition of mitogenic signaling by RAF inhibitors attenuates their activity in BRAFV600E melanomas. Cancer Cell 22:668–682. doi: 10.1016/j.ccr.2012.10.009 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Lito P, Rosen N, Solit DB (2013) Tumor adaptation and resistance to RAF inhibitors. Nat Med 19:1401–1409. doi: 10.1038/nm.3392 CrossRefPubMedGoogle Scholar
  52. Long GV et al (2014) Combined BRAF and MEK Inhibition versus BRAF Inhibition Alone in Melanoma. N Engl J Med 371:1877–1888. doi: 10.1056/NEJMoa1406037 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Luo Z et al (1996) Oligomerization activates c-Raf-1 through a Ras-dependent mechanism. Nature 383:181–185. doi: 10.1038/383181a0 CrossRefPubMedGoogle Scholar
  54. Maertens O et al (2013) Elucidating distinct roles for NF1 in melanomagenesis. Cancer Discov 3:338–349. doi: 10.1158/2159-8290.CD-12-0313 CrossRefPubMedGoogle Scholar
  55. Marais R, Light Y, Paterson HF, Mason CS, Marshall CJ (1997) Differential regulation of Raf-1, A-Raf, and B-Raf by oncogenic ras and tyrosine kinases. J Biol Chem 272:4378–4383CrossRefGoogle Scholar
  56. Marzec M et al (2008) Oncogenic kinase NPM/ALK induces through STAT3 expression of immunosuppressive protein CD274 (PD-L1, B7-H1). Proc Natl Acad Sci U S A 105:20852–20857. doi: 10.1073/pnas.0810958105 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Massi D et al (2015) The status of PD-L1 and tumor-infiltrating immune cells predict resistance and poor prognosis in BRAFi-treated melanoma patients harboring mutant BRAFV600. Ann Oncol 26:1980–1987. doi: 10.1093/annonc/mdv255 CrossRefGoogle Scholar
  58. Matsushita H et al (2012) Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature 482:400–404. doi: 10.1038/nature10755 CrossRefPubMedPubMedCentralGoogle Scholar
  59. McArthur GA et al (2014) Safety and efficacy of vemurafenib in BRAF(V600E) and BRAF(V600K) mutation-positive melanoma (BRIM-3): extended follow-up of a phase 3, randomised, open-label study. Lancet Oncol 15:323–332. doi: 10.1016/S1470-2045(14)70012-9 CrossRefPubMedPubMedCentralGoogle Scholar
  60. McGranahan N et al (2016) Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351:1463–1469. doi: 10.1126/science.aaf1490 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Mellman I, Coukos G, Dranoff G (2011) Cancer immunotherapy comes of age. Nature 480:480–489. doi: 10.1038/nature10673 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Mittendorf EA et al (2014) PD-L1 expression in triple-negative breast cancer. Cancer Immunol Res 2:361–370. doi: 10.1158/2326-6066.CIR-13-0127 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Muller J et al (2014) Low MITF/AXL ratio predicts early resistance to multiple targeted drugs in melanoma. Nat Commun 5:5712. doi: 10.1038/ncomms6712 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Nazarian R et al (2010) Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 468:973–977. doi: 10.1038/nature09626 CrossRefPubMedPubMedCentralGoogle Scholar
  65. NICE (2015) Melanoma: assessment and management. In: National Institute for Health and Care Excellence: clinical guidelinesGoogle Scholar
  66. Paraiso KH et al (2015) Ligand-independent EPHA2 signaling drives the adoption of a targeted therapy-mediated metastatic melanoma phenotype. Cancer Discov 5:264–273. doi: 10.1158/2159-8290.CD-14-0293 CrossRefPubMedGoogle Scholar
  67. Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12:252–264. doi: 10.1038/nrc3239 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Parsa AT et al (2007) Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat Med 13:84–88. doi: 10.1038/nm1517 CrossRefPubMedGoogle Scholar
  69. Peng W et al (2012) PD-1 blockade enhances T-cell migration to tumors by elevating IFN-gamma inducible chemokines. Cancer Res 72:5209–5218. doi: 10.1158/0008-5472.CAN-12-1187 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Peng W et al (2016) Loss of PTEN promotes resistance to T cell-mediated immunotherapy. Cancer Discov 6:202–216. doi: 10.1158/2159-8290.CD-15-0283 CrossRefPubMedGoogle Scholar
  71. Pollock PM et al (2003) High frequency of BRAF mutations in nevi. Nat Genet 33:19–20. doi: 10.1038/ng1054 CrossRefPubMedGoogle Scholar
  72. Poulikakos PI et al (2011) RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature 480:387–390. doi: 10.1038/nature10662 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Restifo NP, Dudley ME, Rosenberg SA (2012) Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol 12:269–281. doi: 10.1038/nri3191 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Ribas A (2015) Adaptive immune resistance: how cancer protects from immune attack. Cancer Discov 5:915–919. doi: 10.1158/2159-8290.CD-15-0563 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Ribas A, Tumeh PC (2012) Cancer therapy: tumours switch to resist. Nature 490:347–348. doi: 10.1038/nature11489 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Robert C et al (2015) Improved overall survival in melanoma with combined dabrafenib and trametinib. N Engl J Med 372:30–39. doi: 10.1056/NEJMoa1412690 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Roberts PJ, Der CJ (2007) Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 26:3291–3310. doi: 10.1038/sj.onc.1210422 CrossRefPubMedGoogle Scholar
  78. Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N (2015) Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160:48–61. doi: 10.1016/j.cell.2014.12.033 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Ruffell B, Coussens LM (2015) Macrophages and therapeutic resistance in cancer. Cancer Cell 27:462–472. doi: 10.1016/j.ccell.2015.02.015 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Schlessinger J (2000) Cell signaling by receptor tyrosine kinases. Cell 103:211–225CrossRefGoogle Scholar
  81. Sekiya T et al (1984) Molecular cloning and the total nucleotide sequence of the human c-Ha-ras-1 gene activated in a melanoma from a Japanese patient. Proc Natl Acad Sci U S A 81:4771–4775CrossRefGoogle Scholar
  82. Shain AH, Bastian BC (2016) From melanocytes to melanomas. Nat Rev Cancer 16:345–358. doi: 10.1038/nrc.2016.37 CrossRefPubMedGoogle Scholar
  83. Shain AH et al (2015) Exome sequencing of desmoplastic melanoma identifies recurrent NFKBIE promoter mutations and diverse activating mutations in the MAPK pathway. Nat Genet 47:1194–1199. doi: 10.1038/ng.3382 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Shankaran V et al (2001) IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410:1107–1111. doi: 10.1038/35074122 CrossRefPubMedGoogle Scholar
  85. Sharpless NE, Kannan K, Xu J, Bosenberg MW, Chin L (2003) Both products of the mouse Ink4a/Arf locus suppress melanoma formation in vivo. Oncogene 22:5055–5059. doi: 10.1038/sj.onc.1206809 CrossRefPubMedGoogle Scholar
  86. Shen CH et al (2016) Loss of cohesin complex components STAG2 or STAG3 confers resistance to BRAF inhibition in melanoma. Nat Med 22:1056–1061. doi: 10.1038/nm.4155 CrossRefPubMedPubMedCentralGoogle Scholar
  87. Shi H et al (2012) Preexisting MEK1 exon 3 mutations in V600E/KBRAF melanomas do not confer resistance to BRAF inhibitors. Cancer Discov 2:414–424. doi: 10.1158/2159-8290.CD-12-0022 CrossRefPubMedPubMedCentralGoogle Scholar
  88. Shi H et al (2014) Acquired resistance and clonal evolution in melanoma during BRAF inhibitor therapy. Cancer Discov 4:80–93. doi: 10.1158/2159-8290.CD-13-0642 CrossRefPubMedGoogle Scholar
  89. Shin DS et al (2016) Primary resistance to PD-1 blockade mediated by JAK1/2 mutations. Cancer Discov 7:188–201. doi: 10.1158/2159-8290.CD-16-1223 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Smith MP et al (2013) Effect of SMURF2 targeting on susceptibility to MEK inhibitors in melanoma. J Natl Cancer Inst 105:33–46. doi: 10.1093/jnci/djs471 CrossRefPubMedGoogle Scholar
  91. Smith MP et al (2014) The immune microenvironment confers resistance to MAPK pathway inhibitors through macrophage-derived TNFalpha. Cancer Discov 4:1214–1229. doi: 10.1158/2159-8290.CD-13-1007 CrossRefPubMedPubMedCentralGoogle Scholar
  92. Smith MP et al (2016) Inhibiting drivers of non-mutational drug tolerance is a salvage strategy for targeted melanoma therapy. Cancer Cell 29:270–284. doi: 10.1016/j.ccell.2016.02.003 CrossRefPubMedPubMedCentralGoogle Scholar
  93. Snyder A et al (2014) Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med 371:2189–2199. doi: 10.1056/NEJMoa1406498 CrossRefPubMedPubMedCentralGoogle Scholar
  94. Solit DB, Rosen N (2011) Resistance to BRAF inhibition in melanomas. N Engl J Med 364:772–774. doi: 10.1056/NEJMcibr1013704 CrossRefPubMedGoogle Scholar
  95. Sosman JA et al (2012) Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N Engl J Med 366:707–714. doi: 10.1056/NEJMoa1112302 CrossRefPubMedPubMedCentralGoogle Scholar
  96. Spranger S, Gajewski TF (2016) Tumor-intrinsic oncogene pathways mediating immune avoidance. Oncoimmunology 5:e1086862. doi: 10.1080/2162402X.2015.1086862 CrossRefPubMedGoogle Scholar
  97. Spranger S et al (2013) Up-regulation of PD-L1, IDO, and T(regs) in the melanoma tumor microenvironment is driven by CD8(+) T cells. Sci Transl Med 5:200ra116. doi: 10.1126/scitranslmed.3006504 CrossRefPubMedPubMedCentralGoogle Scholar
  98. Spranger S, Bao R, Gajewski TF (2015) Melanoma-intrinsic beta-catenin signalling prevents anti-tumour immunity. Nature 523:231–235. doi: 10.1038/nature14404 CrossRefGoogle Scholar
  99. Stephen AG, Esposito D, Bagni RK, McCormick F (2014) Dragging Ras back in the ring. Cancer Cell 25:272–281. doi: 10.1016/j.ccr.2014.02.017 CrossRefPubMedGoogle Scholar
  100. Straussman R et al (2012) Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature 487:500–504. doi: 10.1038/nature11183 CrossRefPubMedPubMedCentralGoogle Scholar
  101. Su F et al (2012) RAS mutations in cutaneous squamous-cell carcinomas in patients treated with BRAF inhibitors. N Engl J Med 366:207–215. doi: 10.1056/NEJMoa1105358 CrossRefPubMedPubMedCentralGoogle Scholar
  102. Tape CJ et al (2016) Oncogenic KRAS regulates tumor cell signaling via stromal reciprocation. Cell 165:910–920. doi: 10.1016/j.cell.2016.03.029 CrossRefPubMedPubMedCentralGoogle Scholar
  103. Tirosh I et al (2016) Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352:189–196. doi: 10.1126/science.aad0501 CrossRefPubMedPubMedCentralGoogle Scholar
  104. Topalian SL et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366:2443–2454. doi: 10.1056/NEJMoa1200690 CrossRefPubMedPubMedCentralGoogle Scholar
  105. Topalian SL et al (2014) Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol 32:1020–1030. doi: 10.1200/JCO.2013.53.0105 CrossRefPubMedPubMedCentralGoogle Scholar
  106. Tsavachidou D et al (2004) SPRY2 is an inhibitor of the ras/extracellular signal-regulated kinase pathway in melanocytes and melanoma cells with wild-type BRAF but not with the V599E mutant. Cancer Res 64:5556–5559. doi: 10.1158/0008-5472.CAN-04-1669 CrossRefPubMedGoogle Scholar
  107. Tumeh PC et al (2014) PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515:568–571. doi: 10.1038/nature13954 CrossRefPubMedPubMedCentralGoogle Scholar
  108. Van Allen EM et al (2014) The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma. Cancer Discov 4:94–109. doi: 10.1158/2159-8290.CD-13-0617 CrossRefPubMedGoogle Scholar
  109. van't Veer LJ et al (1989) N-ras mutations in human cutaneous melanoma from sun-exposed body sites. Mol Cell Biol 9:3114–3116CrossRefGoogle Scholar
  110. Villanueva J et al (2010) Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer Cell 18:683–695. doi: 10.1016/j.ccr.2010.11.023 CrossRefPubMedPubMedCentralGoogle Scholar
  111. Wagle N et al (2011) Dissecting therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling. J Clin Oncol 29:3085–3096. doi: 10.1200/JCO.2010.33.2312 CrossRefPubMedPubMedCentralGoogle Scholar
  112. Wan PT et al (2004) Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116:855–867CrossRefGoogle Scholar
  113. Whiteman D, Green A (1999) The pathogenesis of melanoma induced by ultraviolet radiation. N Engl J Med 341:766–767CrossRefGoogle Scholar
  114. Whiteman DC et al (2003) Melanocytic nevi, solar keratoses, and divergent pathways to cutaneous melanoma. J Natl Cancer Inst 95:806–812CrossRefGoogle Scholar
  115. Whittaker SR et al (2013) A genome-scale RNA interference screen implicates NF1 loss in resistance to RAF inhibition. Cancer Discov 3:350–362. doi: 10.1158/2159-8290.CD-12-0470 CrossRefPubMedPubMedCentralGoogle Scholar
  116. Wilson TR et al (2012) Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors. Nature 487:505–509. doi: 10.1038/nature11249 CrossRefPubMedPubMedCentralGoogle Scholar
  117. Wolchok JD et al (2013) Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 369:122–133. doi: 10.1056/NEJMoa1302369 CrossRefPubMedPubMedCentralGoogle Scholar
  118. Xing F et al (2012) Concurrent loss of the PTEN and RB1 tumor suppressors attenuates RAF dependence in melanomas harboring (V600E)BRAF. Oncogene 31:446–457. doi: 10.1038/onc.2011.250 CrossRefPubMedGoogle Scholar
  119. Young A et al (2009) Ras signaling and therapies. Adv Cancer Res 102:1–17. doi: 10.1016/S0065-230X(09)02001-6 CrossRefPubMedGoogle Scholar
  120. Zaretsky JM et al (2016) Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med 375:819–829. doi: 10.1056/NEJMoa1604958 CrossRefPubMedPubMedCentralGoogle Scholar
  121. Zhang G et al (2016) Targeting mitochondrial biogenesis to overcome drug resistance to MAPK inhibitors. J Clin Invest 126:1834–1856. doi: 10.1172/JCI82661 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Skin Cancer and Ageing, Cancer Research UK Manchester InstituteThe University of ManchesterManchesterUK
  2. 2.Salford Royal NHS Foundation TrustManchesterUK

Personalised recommendations