Advertisement

pp 1-24 | Cite as

Marine Conservation and Marine Protected Areas

  • Amanda XuerebEmail author
  • Cassidy C. D’Aloia
  • Rémi M. Daigle
  • Marco Andrello
  • Alicia Dalongeville
  • Stéphanie Manel
  • David Mouillot
  • Frédéric Guichard
  • Isabelle M. Côté
  • Janelle M. R. Curtis
  • Louis Bernatchez
  • Marie-Josée Fortin
Chapter
Part of the Population Genomics book series

Abstract

Marine protected areas are important tools for the conservation of marine biodiversity, providing refuge for harvested species and mitigating the negative impacts of human activities in marine ecosystems. However, delineating sites for protection within effective MPA networks is a formidable challenge. A primary objective of MPA planning is to optimize connectivity among reserve sites, such that immigration from distant sites or populations sustains biodiversity, both within MPAs and in adjacent unprotected areas. Additionally, as climate change further threatens marine biodiversity, adaptation to novel climatic and environmental conditions also has important consequences for the persistence of marine populations. Inferences from population genomics can provide valuable insight into the design of MPA networks, both for ensuring connectivity and preserving adaptive potential for future environmental change. However, genetic and genomic data are rarely used to inform marine spatial planning. Effective dissemination of primary research to practitioners will be key to the successful integration of these valuable data into MPA network designs.

Keywords

Climate change Conservation genomics Local adaptation Marine connectivity Marine protected area networks Marine spatial planning 

References

  1. Aitken SN, Whitlock MC. Assisted gene flow to facilitate local adaptation to climate change. Annu Rev Ecol Evol Syst. 2013;44:367–88.Google Scholar
  2. Allendorf FW, Hohenlohe PA, Luikart G. Genomics and the future of conservation genetics. Nat Rev Genet. 2010;11:697–709.Google Scholar
  3. Almany GR, Berumen ML, Thorrold SR, Planes S, Jones GP. Local replenishment of coral reef fish populations in a marine reserve. Science. 2007;316:742–4.Google Scholar
  4. Almany GR, Planes S, Thorrold SR, Berumen ML, Bode M, Saenz-Agudelo P, Bonin MC, Frisch AJ, Harrison HB, Messmer V, Nanninga GB, Priest MA, Srinivasan M, Sinclair-Taylor T, Williamson DH, Jones GP. Larval fish dispersal in a coral-reef seascape. Nat Ecol Evol. 2017;1(6):148.Google Scholar
  5. Andrello M, Guilhaumon F, Albouy C, Parravicini V, Scholtens J, Verley P, Barange M, Sumaila UR, Manel S, Mouillot D. Global mismatch between fishing dependency and larval supply from marine reserves. Nat Commun. 2017;8:16039.Google Scholar
  6. Andrews KR, Karczmarski L, Au WWL, Rickards SH, Vanderlip CA, Bowen BW, Grau EG, Toonen RJ. Rolling stones and stable homes: social structure, habitat diversity and population genetics of the Hawaiian spinner dolphin (Stenella longirostris). Mol Ecol. 2010;19:732–48.Google Scholar
  7. Andrews KR, Good JM, Miller MR, Luikart G, Hohenlohe PA. Harnessing the power of RADseq for ecological and evolutionary genomics. Nat Rev Genet. 2016;17:81–92.Google Scholar
  8. Babin C, Gagnaire P-A, Pavey SA, Bernatchez L. RAD-seq reveals patterns of additive polygenic variation caused by spatially-varying selection in the American eel (Anguilla rostrata). Genome Biol Evol. 2017;9:2974–86.Google Scholar
  9. Barbosa S, Mestre F, White TA, Paupério J, Alves PC, Searle JB. Integrative approaches to guide conservation decisions: using genomics to define conservation units and functional corridors. Mol Ecol. 2018;27:3452–65.Google Scholar
  10. Bay RA, Palumbi SR. Multilocus adaptation associated with heat resistance in reef-building corals. Curr Biol. 2014;24:2952–6.Google Scholar
  11. Bay RA, Rose N, Barrett R, Bernatchez L, Ghalambor CK, Lasky JR, Brem RB, Palumbi SR, Ralph P. Predicting evolutionary responses to contemporary environmental change using population genomic data. Am Nat. 2017;189:463–73.Google Scholar
  12. Beger M, Selkoe KA, Treml E, Barber PH, Crandall ED, Toonen RJ, Riginos C. Evolving coral reef conservation with genetic information. Bull Mar Sci. 2014;90:159–85.Google Scholar
  13. Benestan L, Gosselin T, Perrier C, Sainte-Marie B, Rochette R, Bernatchez L. RAD genotyping reveals fine-scale genetic structuring and provides powerful population assignment in a widely distributed marine species, the American lobster (Homarus americanus). Mol Ecol. 2015;24:3299–315.Google Scholar
  14. Benestan LM, Ferchaud A-L, Hohenlohe PA, Garner BA, Naylor GJP, Baums IB, Schwartz MK, Kelley JL, Luikart G. Conservation genomics of natural and managed populations: building a conceptual and practical framework. Mol Ecol. 2016a;25:2967–77.Google Scholar
  15. Benestan L, Quinn B, Laporte M, Maaroufi H, Rochette R, Bernatchez L. Seascape genomics provides evidence for thermal adaptation and current-mediated population structure in American lobster (Homarus americanus). Mol Ecol. 2016b;25:5073–92.Google Scholar
  16. Bernatchez L. On the maintenance of genetic variation and adaptation to environmental change: considerations from population genomics in fishes. J Fish Biol. 2016;89:2519–56.Google Scholar
  17. Bernatchez L, Wellenreuther M, Araneda C, Ashton DT, Barth JMI, Beacham TD, Maes GE, Martinsohn JT, Miller KM, Naish KA, Ovenden JR, Primmer CR, Suk HY, Therkildsen NO, Withler RE. Harnessing the power of genomics to secure the future of seafood. Trends Ecol Evol. 2017;32:665–80.Google Scholar
  18. Bonin A, Nicole F, Pompanon F, Miaud C, Taberlet P. Population adaptive index: a new method to help measure intraspecific genetic diversity and prioritize populations for conservation. Conserv Biol. 2007;21:697–708.Google Scholar
  19. Calosi P, De Wit P, Thor P, Dupont S. Will life find a way? Evolution of marine species under global change. Evol Appl. 2016;9:1035–42.Google Scholar
  20. Carlson SM, Cunningham CJ, Westley PAH. Evolutionary rescue in a changing world. Trends Ecol Evol. 2014;29:521–30.Google Scholar
  21. Christie MR, Meirmans PG, Gaggiotti OE, Toonen RJ, White C. Disentangling the relative merits and disadvantages of parentage analysis and assignment tests for inferring population connectivity. ICES J Mar Sci. 2017;74:1749–62.Google Scholar
  22. Çilingir FG, Rheindt FE, Garg KM, Platt K, Platt SG, Bickford DP. Conservation genomics of the endangered Burmese roofed turtle. Conserv Biol. 2017;31:1469–76.Google Scholar
  23. Costello MJ, Ballantine B. Biodiversity conservation should focus on no-take marine reserves: 94% of marine protected areas allow fishing. Trends Ecol Evol. 2015;30:507–9.Google Scholar
  24. Côté CL, Gagnaire P-A, Bourret V, Verreault G, Castonguay M, Bernatchez L. Population genetics of the American eel (Anguilla rostrata): FST = 0 and North Atlantic Oscillation effects on demographic fluctuations in panmictic species. Mol Ecol. 2013;22:1763–76.Google Scholar
  25. Cowen RK, Sponagule S. Larval dispersal and marine population connectivity. Annu Rev Mar Sci. 2009;1:443–66.Google Scholar
  26. Cowen RK, Paris CB, Srinivasan A. Scaling of connectivity in marine populations. Science. 2006;311:522–7.Google Scholar
  27. Cowen RK, Gawarkiewicz G, Pineda J, Thorrold SR, Werner FE. Population connectivity in marine systems: an overview. Oceanography. 2007;20:14–21.Google Scholar
  28. Cros A, Toonen RJ, Donahue MJ, Karl SA. Connecting Palau’s marine protected areas: a population genetic approach to conservation. Coral Reefs. 2017;36:735–48.Google Scholar
  29. D’Aloia CC, Bogdanowicz SM, Francis RK, Majoris JE, Harrison RG, Buston PM. Patterns, causes, and consequences of marine larval dispersal. Proc Natl Acad Sci U S A. 2015;112:13940–5.Google Scholar
  30. Daigle RM, Metaxas A, Balbar A, McGowan J, Treml EA, Kuempel CD, Possingham HP, Beger M. Operationalizing ecological connectivity in spatial conservation planning with Marxan Connect. bioRxiv. 2018;315424.Google Scholar
  31. Dale MRT, Fortin M-J. Spatial analysis: a guide for ecologists. 2nd ed. Cambridge: Cambridge University Press; 2014.Google Scholar
  32. Dalongeville A, Andrello M, Mouillot D, Lobreaux S, Forti M-J, Lasram F, Belmaker J, Rocklin D, Manel S. Geographic isolation and larval dispersal shape seascape genetic patterns differently according to spatial scale. Evol Appl. 2018a;11:1437–47.Google Scholar
  33. Dalongeville A, Benestan L, Mouillot D, Lobreaux S, Manel S. Combining six genome scan methods to detect candidate genes to salinity in the Mediterranean striped red mullet (Mullus surmuletus). BMC Genomics. 2018b;19:217.Google Scholar
  34. Day J, Dudley N, Hockings M, Holmes G, Laffoley D, Stolton S, Wells S. Guidelines for applying the IUCN protected area management categories to marine protected areas. Gland: IUCN; 2012. p. 36.Google Scholar
  35. De Wit P, Palumbi SR. Transcriptome-wide polymorphisms of red abalone (Haliotis rufescens) reveal patterns of gene flow and local adaptation. Mol Ecol. 2013;22:2884–97.Google Scholar
  36. Deck J, Gaither MR, Ewing R, Bird CE, Davies N, Meyer C, Riginos C, Toonen RJ, Crandall ED. The Genomic Observatories Metadatabase (GeOMe): a new repository for field and sampling event metadata associated with genetic samples. PLoS Biol. 2017;15:e2002925.Google Scholar
  37. Dyer RJ, Nason JD. Population graphs: the graph theoretic shape of genetic structure. Mol Ecol. 2004;13:1713–27.Google Scholar
  38. Dyer RJ, Nason JD, Garrick RC. Landscape modelling of gene flow: improved power using conditional genetic distance derived from the topology of population networks. Mol Ecol. 2010;19:3746–59.Google Scholar
  39. Edgar GJ, Stuart-Smith RD, Willis TJ, Kininmonth S, Baker SC, Banks S, Barrett NS, Becerro MA, Bernard ATF, Berkhout J, Buxton CD, Campbell SJ, Cooper AT, Davey M, Edgar SC, Försterra G, Galván DE, Irigoyen AJ, Kushner DJ, Moura R, Parnell PE, Shears NT, Soler G, Strain EMA, Thomson RJ. Global conservation outcomes depend on marine protected areas with five key features. Nature. 2014;506:216–20.Google Scholar
  40. Flanagan SP, Forester BR, Latch EK, Aitken SN, Hoban S. Guidelines for planning genomic assessment and monitoring of locally adaptive variation to inform species conservation. Evol Appl. 2017;11:1035–52.Google Scholar
  41. Frankham R. Genetic adaptation to captivity in species conservation. Mol Ecol. 2008;17:325–33.Google Scholar
  42. Frankham R. Where are we in conservation genetics and where do we need to go? Conserv Genet. 2010;11:661–3.Google Scholar
  43. Frankham R. Genetic rescue of small inbred populations: meta-analysis reveals large and consistent benefits of gene flow. Mol Ecol. 2015;24:2610–8.Google Scholar
  44. Frankham R, Bradshaw CJA, Brook BW. Genetics in conservation management: revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biol Conserv. 2014;170:56–63.Google Scholar
  45. Funk WC, McKay JK, Hohenlohe PA, Allendorf FW. Harnessing genomics for delineating conservation units. Trends Ecol Evol. 2012;27:489–96.Google Scholar
  46. Gagnaire P-A, Normandeau E, Côté C, Hansen MM, Bernatchez L. The genetic consequences of spatially varying selection in the panmictic American eel (Anguilla rostrata). Genetics. 2012;190:725–36.Google Scholar
  47. Gaines SD, White C, Carr MH, Palumbi SR. Designing marine reserve networks for both conservation and fisheries management. Proc Natl Acad Sci U S A. 2010;107:18286–93.Google Scholar
  48. Garner BA, Hand BK, Amish SJ, Bernatchez L, Foster JT, Miller KM, Morin PA, Narum SR, O’Brien SJ, Roffler G, Templin WD, Sunnucks P, Strait J, Warheit KI, Seamons TR, Wenburg J, Olsen J, Luikart G. Genomics in conservation: case studies and bridging the gap between data and application. Trends Ecol Evol. 2016;31:81–3.Google Scholar
  49. Gerlach G, Atema J, Kingsford MJ, Black KP, Millers-Sims V. Smelling home can prevent dispersal of reef fish larvae. Proc Natl Acad Sci. 2007;104:858–63.Google Scholar
  50. Gill DA, Mascia MB, Ahmadia GN, Glew L, Lester SE, Barnes M, Craigie I, Darling E, Free CM, Geldmann J, Holst S, Jensen OP, White AT, Basurto X, Coad L, Gates RD, Guannel G, Mumby PJ, Thomas H, Whitmee S, Woodley S, Fox HE. Capacity shortfalls hinder the performance of marine protected areas globally. Nature. 2017;543:665–9.Google Scholar
  51. Golbuu Y, Gouezo M, Kurihara H, Rehm L, Wolanski E. Long-term isolation and local adaptation in Palau’s Nikko Bay help corals thrive in acidic waters. Coral Reefs. 2016;35:909–18.Google Scholar
  52. Green AL, Maypa AP, Almany GR, Rhodes KL, Weeks R, Abesamis RA, Gleason MG, Mumby PJ, White AT. Larval dispersal and movement patterns of coral reef fishes, and implications for marine reserve network design. Biol Rev. 2015;90:1215–47.Google Scholar
  53. Gunderson AR, Stillman JH. Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming. Proc Biol Sci. 2015;282:20150401.Google Scholar
  54. Halpern BS, Frazier M, Potapenko J, Casey KS, Koenig K, Longo C, Lowndes JS, Rockwood RC, Selig ER, Selkoe KA, Walbridge S. Spatial and temporal changes in cumulative human impacts on the world’s ocean. Nat Commun. 2015;6:1–7.Google Scholar
  55. Harrison HB, Williamson DH, Evans RD, Almany GR, Thorrold SR, Russ GR, Feldheim KA, van Herwerden L, Planes S, Srinivasan M, Berumen ML, Jones GP. Larval export from marine reserves and the recruitment benefit for fish and fisheries. Curr Biol. 2012;22:1023–8.Google Scholar
  56. Hedgecock D, Barber PH, Edmands S. Genetic approaches to measuring connectivity. Oceanography. 2007;20:70–9.Google Scholar
  57. Holderegger R, Kamm U, Gugerli F. Adaptive vs. neutral genetic diversity: implications for landscape genetics. Landsc Ecol. 2006;21:797–807.Google Scholar
  58. Holland LP, Jenkins TL, Stevens JR. Contrasting patterns of population structure and gene flow facilitate exploration of connectivity in two widely distributed temperate octocorals. Heredity. 2017;119:35–48.Google Scholar
  59. Iacchei M, Gaither MR, Bowen BW, Toonen RJ. Testing dispersal limits in the sea: range-wide phylogeography of the pronghorn spiny lobster Panulirus penicillatus. J Biogeogr. 2016;43:1032–44.Google Scholar
  60. Jahnke M, Jonsson PR, Moksnes P-O, Loo L-O, Jacobi MN, Olsen JL. Seascape genetics and biophysical connectivity modelling support conservation of the seagrass Zostera marina in the Skagerrak-Kattegat region of the eastern North Sea. Evol Appl. 2018;11:645–61.Google Scholar
  61. James MK, Armsworth PR, Mason LB, Bode L. The structure of reef fish metapopulations: modeling larval dispersal and retention patterns. Proc Biol Sci. 2002;269:2079–86.Google Scholar
  62. Jenkins TL, Stevens JR. Assessing connectivity between MPAs: selecting taxa and translating genetic data to inform policy. Mar Policy. 2018;94:164–73.Google Scholar
  63. Jorde PE, Søvik G, Westgaard J-I, Albretsen J, André C, Hvingel C, Johansen T, Sandvik AD, Kingsley M, Jørstad KE. Genetically distinct populations of northern shrimp, Pandalus borealis, in the North Atlantic: adaptation to different temperatures as an isolation factor. Mol Ecol. 2015;24:1742–57.Google Scholar
  64. Kawecki TJ, Ebert D. Conceptual issues in local adaptation. Ecol Lett. 2004;7:1225–41.Google Scholar
  65. Kershaw F, Carvalho I, Loo J, Pomilla C, Best PR, Findlay KP, Cerchio S, Collins T, Engel MH, Minton G, Ersts P, Barendse J, Kotze PGH, Razafindrakoto Y, Ngouessono S, Meÿer M, Thornton M, Rosenbaum HC. Multiple processes drive genetic structure of humpback whale (Megaptera novaeangliae) populations across spatial scales. Mol Ecol. 2017;26:977–94.Google Scholar
  66. Kimura M, Ohta T. The average number of generations until fixation of a mutant gene in a finite population. Science. 1969;61:763–71.Google Scholar
  67. Kininmonth S, Beger M, Bode M, Peterson E, Adams VM, Dorfman D, Brumbaugh DR, Possingham HP. Dispersal connectivity and reserve selection for marine conservation. Ecol Model. 2011;222:1272–82.Google Scholar
  68. Koelewijn HP, Pérez-Haro M, Jansman HAH, Boerwinkel MC, Bovenschen J, Lammertsma DR, Niewold FJJ, Kuiters AT. The reintroduction of the Eurasian otter (Lutra lutra) into the Netherlands: hidden life revealed by noninvasive genetic monitoring. Conserv Genet. 2010;11:601–14.Google Scholar
  69. Krueck NC, Ahmadia GN, Possingham HP, Riginos C, Treml EA, Mumby PJ. Marine reserve targets to sustain and rebuild unregulated fisheries. PLoS Biol. 2017;15:1–20.Google Scholar
  70. Lagabrielle E, Crochelet E, Andrello M, Schill SR, Arnaud-Haond S, Alloncle N, Ponge B. Connecting MPAs – eight challenges for science and management. Aquat Conserv. 2008;24:94–110.Google Scholar
  71. Lal MM, Southgate PC, Jerry DR, Bosserelle C, Zenger KR. Swept away: ocean currents and seascape features influence genetic structure across the 18,000 km Indo-Pacific distribution of a marine invertebrate, the black-lip pearl oyster Pinctada margaritifera. BMC Genomics. 2017;18:66.Google Scholar
  72. Larson WA, Seeb LW, Everett MV, Waples RK, Templin WD, Seeb JE. Genotyping by sequencing resolves shallow population structure to inform conservation of Chinook salmon (Oncorhynchus tshawytscha). Evol Appl. 2014;7:355–69.Google Scholar
  73. Levin SA, Lubchenco J. Resilience, robustness, and marine ecosystem-based management. AIBS Bull. 2008;58:27–32.Google Scholar
  74. Liggins L, Treml EA, Possingham HP, Riginos C. Seascape features, rather than dispersal traits, predict spatial genetic patterns of co-distributed reef fishes. J Biogeogr. 2016;43:256–67.Google Scholar
  75. Lowe WH, Allendorf FW. What can genetics tell us about population connectivity? Mol Ecol. 2010;19:3038–51.Google Scholar
  76. Lubchenco J, Grorud-Colvert K. Making waves: the sciences and politics of ocean protection. Science. 2015;350:382–3.Google Scholar
  77. Magris RA, Andrello M, Pressey RL, Mouillot D, Dalongeville A, Jacobi MN, Manel S. Biologically representative and well-connected marine reserves enhance biodiversity persistence in conservation planning. Conserv Lett. 2018;11:e12439.Google Scholar
  78. Manel S, Holderegger R. Ten years of landscape genetics. Trends Ecol Evol. 2013;28:614–21.Google Scholar
  79. Manel S, Schwartz MK, Luikart G, Taberlet P. Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol. 2003;18:189–97.Google Scholar
  80. Manel S, Gaggiotti OE, Waples RS. Assignment methods: matching biological questions with appropriate techniques. Trends Ecol Evol. 2005;20:136–42.Google Scholar
  81. Manel S, Joost S, Epperson BK, Holderegger R, Storfer A, Rosenberg MS, Scribner KT, Bonin A, Fortin M-J. Perspectives on the use of landscape genetics to detect genetic adaptive variation in the field. Mol Ecol. 2010;19:3760–72.Google Scholar
  82. Manel S, Perrier C, Pratlong M, Abi-Rached L, Paganini J, Pontarotti P, Aurelle D. Genomic resources and their influence on the detection of the signal of positive selection in genome scans. Mol Ecol. 2016;25:170–84.Google Scholar
  83. Manel S, Andrello M, Henry K, Verdelet D, Darracq A, Guerin P-E, Desprez B, Devaux P. Predicting genotype environmental range from genome-environment associations. Mol Ecol. 2018;27:2823–33.Google Scholar
  84. Mellin C, MacNeil MA, Cheal AJ, Emslie MJ, Caley JM. Marine protected areas increase resilience among coral reef communities. Ecol Lett. 2016;19:629–37.Google Scholar
  85. Micheli F, Saenz-Arroyo A, Greenley A, Vazquez L, Espinoza Montes JA, Rossetto M, De Leo GA. Evidence that marine reserves enhance resilience to climatic impacts. PLoS One. 2012;7:e40832.Google Scholar
  86. Nanninga GB, Saenz-Agudelo P, Zhan P, Hoteit I, Berumen ML. Not finding Nemo: limited reef-scale retention in a coral reef fish. Coral Reefs. 2015;34:383–92.Google Scholar
  87. Nielsen ES, Beger M, Henriques R, Selkoe KA, von der Heyden S. Multispecies genetic objectives in spatial conservation planning. Conserv Biol. 2017;31:872–82.Google Scholar
  88. Ovenden JR, Berry O, Welch DJ, Buckworth RC, Dichmont CM. Ocean’s eleven: a critical evaluation of the role of population, evolutionary, and molecular genetics in the management of wild fisheries. Fish Fish. 2015;16:125–59.Google Scholar
  89. Palsbøll PJ, Bérubé M, Allendorf FW. Identification of management units using population genetic data. Trends Ecol Evol. 2007;22:11–6.Google Scholar
  90. Palumbi SR. Population genetics, demographic connectivity, and the design of marine reserves. Ecol Appl. 2003;13:S146–58.Google Scholar
  91. Patkeau D, Slade R, Burden M, Estoup A. Genetic assignment methods for the direct real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Mol Ecol. 2004;13:55–65.Google Scholar
  92. Patterson HM, Swearer SE. Long-distance dispersal and local retention of larvae as mechanisms of recruitment in an island population of a coral reef fish. Austral Ecol. 2007;32:122–30.Google Scholar
  93. Pespeni MH, Sanford E, Gaylord B, Hill TM, Hosfelt JD, Jaris HK, LaVigne M, Lenz EA, Russell AD, Young MK, Palumbi SR. Evolutionary change during experimental ocean acidification. Proc Natl Acad Sci U S A. 2013;110:6937–42.Google Scholar
  94. Pinsky ML, Montes HR Jr, Palumbi SR. Using isolation by distance and effective density to estimate dispersal scales in anemonefish. Evolution. 2010;64:2688–700.Google Scholar
  95. Pinsky ML, Saenz-Agudelo P, Salles OC, Almany GR, Bode M, Berumen ML, Andréfouët S, Thorrold SR, Jones GP, Planes S. Marine dispersal scales are congruent over evolutionary and ecological time. Curr Biol. 2017;27:149–54.Google Scholar
  96. Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–59.Google Scholar
  97. Puebla O, Bermingham E, McMillan WO. On the spatial scale of dispersal in coral reef fishes. Mol Ecol. 2012;21:5675–88.Google Scholar
  98. Rellstab C, Gugerli F, Eckert AJ, Hancock AM, Holderegger R. A practical guide to environmental association analysis in landscape genomics. Mol Ecol. 2015;24:4348–70.Google Scholar
  99. Riegl BM, Purkis SJ, Al-Cibahy AS, Abdel-Moati MA, Hoegh-Guldberg O. Present limits to heat-adaptability in corals and population-level responses to climate extremes. PLoS One. 2011;6:e24802.Google Scholar
  100. Riginos C, Crandall ED, Liggins L, Bongaerts P, Treml EA. Navigating the currents of seascape genomics: how spatial analyses can augment population genomic studies. Curr Zool. 2016;62:581–601.Google Scholar
  101. Rousset F. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics. 1997;145:1219–28.Google Scholar
  102. Rozenfeld AF, Arnaud-Haond S, Hernández-García E, Eguíluz VM, Serrão EA, Duarte CM. Network analysis identifies weak and strong links in a metapopulation system. Proc Natl Acad Sci U S A. 2008;105:18824–9.Google Scholar
  103. Ryu T, Veilleux HD, Donelson JM, Munday PL, Ravasi T. The epigenetic landscape of transgenerational acclimation to ocean warming. Nat Clim Chang. 2018;8:504–9.Google Scholar
  104. Saenz-Agudelo P, Jones GP, Thorrold SR, Planes S. Estimating connectivity in marine populations: an empirical evaluation of assignment tests and parentage analysis under different gene flow scenarios. Mol Ecol. 2009;18:1675–776.Google Scholar
  105. Sala E, Giakoumi S. No-take marine reserves are the most effective protected areas in the ocean. ICES J Mar Sci. 2018;75:1166–8.Google Scholar
  106. Sala E, Lubchenco J, Grorud-Colvert K, Novelli C, Roberts C, Sumaila UR. Assessing real progress towards effective ocean protection. Mar Policy. 2018;91:11–3.Google Scholar
  107. Sanford E, Kelly MW. Local adaptation in marine invertebrates. Annu Rev Mar Sci. 2011;3:509–35.Google Scholar
  108. Savolainen O, Lascoux M, Merilä J. Ecological genomics of local adaptation. Nat Rev Genet. 2013;14:807–20.Google Scholar
  109. Schiavina M, Marino IAM, Zane L, Melià P. Matching oceanography and genetics at the basin scale. Seascape connectivity of the Mediterranean shore crab in the Adriatic Sea. Mol Ecol. 2014;23:5496–507.Google Scholar
  110. Schunter C, Carreras-Carbonell J, Macpherson E, Tintoré J, Vidal-Vijande E, Pascual A, Guidetti P, Pascual M. Matching genetics with oceanography: directional gene flow in a Mediterranean fish species. Mol Ecol. 2011;20:5167–81.Google Scholar
  111. Selkoe KA, D’Aloia CC, Crandall ED, Iacchei M, Liggins L, Puritz JB, von der Heyden S, Toonen RJ. A decade of seascape genetics: contributions to basic and applied marine connectivity. Mar Ecol Prog Ser. 2016;554:1–19.Google Scholar
  112. Sgrò CM, Lowe AJ, Hoffmann AA. Building evolutionary resilience for conserving biodiversity under climate change. Evol Appl. 2011;4:326–37.Google Scholar
  113. Shafer ABA, Wolf JBW, Alves PC, Bergström L, Bruford MW, Brännström I, Colling G, Dalén L, De Meester L, Ekblom R, Fawcett KD, Fior S, Hajibabaei M, Hill JA, Hoezel AR, Höglund J, Jensen EL, Krause J, Kristensen TN, Krützen M, McKay JK, Norman AJ, Ogden R, Österling EM, Ouborg NJ, Piccolo J, Popović D, Primmer CR, Reed FA, Roumet M, Salmona J, Schenekar T, Schwartz MK, Segelbacher G, Senn H, Thaulow J, Valtonen M, Veale A, Vergeer P, Vijay N, Vilà C, Weissensteiner M, Wennerström L, Wheat CW, Zieliński P. Genomics and the challenging translation into conservation practice. Trends Ecol Evol. 2015;30:78–87.Google Scholar
  114. Siegle MR, Taylor EB, Miller KM, Withler RE, Yamanaka KL. Subtle population genetic structure in yelloweye rockfish (Sebastes ruberrimus) is consistent with a major oceanographic division in British Columbia, Canada. PLoS One. 2013;8:e71083.Google Scholar
  115. Stanley RRE, DiBacco C, Lowen B, Beiko RG, Jeffery NW, Van Wyngaarden M, Bentzen P, Brickman D, Benestan L, Bernatchez L, Johnson C, Snelgrove PVR, Wang Z, Wringe BF, Bradbury IR. A climate-associated multispecies cline in the northwest Atlantic. Sci Adv. 2018;4:eaaq0929.Google Scholar
  116. Stuart-Smith RD, Edgar GJ, Barrett NS, Kininmonth SJ, Bates AE. Thermal biases and vulnerability to warming in the world’s marine fauna. Nature. 2015;528:88–92.Google Scholar
  117. Sunday JM, Popović I, Palen WJ, Foreman MGG, Hart MW. Ocean circulation model predicts high genetic structure observed in a long-lived pelagic developer. Mol Ecol. 2014;23:5036–47.Google Scholar
  118. Taylor PD, Fahrig L, Henein K, Merriam G. Connectivity is a vital element of landscape structure. Oikos. 1993;68:571–3.Google Scholar
  119. Thomas L, Bell JJ. Testing the consistency of connectivity patterns for a widely dispersing marine species. Heredity. 2013;111:345–54.Google Scholar
  120. Thomas L, Kennington WJ, Stat M, Wilkinson SP, Kool JT, Kendrick GA. Isolation by resistance across a complex coral reef seascape. Proc Biol Sci. 2015;82:20151217.Google Scholar
  121. Thorrold SR, Zacherl DD, Levin LA. Population connectivity and larval dispersal: using geochemical signatures in calcified structures. Oceanography. 2007;20:80–9.Google Scholar
  122. Tischendorf L, Fahrig L. How should we measure landscape connectivity? Landsc Ecol. 2000;15:633–41.Google Scholar
  123. Truelove NK, Kough AS, Behringer DC, Paris CB, Box SJ, Preziosi RF, Butler MJ IV. Biophysical connectivity explains population genetic structure in a highly dispersive marine species. Coral Reefs. 2017;36:233–44.Google Scholar
  124. Van Wyngaarden M, Snelgrove PVR, DiBacco C, Hamilton LC, Rodríguez-Ezpeleta N, Jeffrey NW, Stanley RRE, Bradbury IR. Identifying patterns of dispersal, connectivity and selection in the sea scallop, Placopecten magellanicus, using RADseq-derived SNPs. Evol Appl. 2017;10:102–17.Google Scholar
  125. Veilleux HD, Ryu T, Donelson JM, van Herwerden L, Seridi L, Ghosheh Y, Berumen ML, Leggat W, Ravasi T, Munday PL. Molecular processes of transgenerational acclimation to a warming ocean. Nat Clim Chang. 2015;5:1074–8.Google Scholar
  126. Volkmann L, Martyn I, Moulton V, Spillner A, Mooers AO. Prioritizing populations for conservation using phylogenetic networks. PLoS One. 2014;9:e88945.Google Scholar
  127. von der Heyden S. Making evolutionary history count: biodiversity planning for coral reef fishes and the conservation of evolutionary processes. Coral Reefs. 2017;36:183–94.Google Scholar
  128. Wagner HH, Fortin M-J. A conceptual framework for the spatial analysis of landscape genetic data. Conserv Genet. 2013;14:253–61.Google Scholar
  129. Whiteley AR, Fitzpatrick SW, Funk WC, Tallmon DA. Genetic rescue to the rescue. Trends Ecol Evol. 2015;30:42–9.Google Scholar
  130. Whitlock MC, McCauley DE. Indirect measures of gene flow and migration: FST ≠1/(4Nm + 1). Heredity. 1999;82:117–25.Google Scholar
  131. Wright S. Isolation by distance. Genetics. 1943;28:114–38.Google Scholar
  132. Xuereb A, Benestan L, Normandeau É, Daigle RM, Curtis JMR, Bernatchez L, Fortin M-J. Asymmetric oceanographic processes mediate connectivity and population genetic structure, as revealed by RADseq, in a highly dispersive marine invertebrate (Parastichopus californicus). Mol Ecol. 2018;27:2347–64.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Amanda Xuereb
    • 1
    Email author
  • Cassidy C. D’Aloia
    • 11
  • Rémi M. Daigle
    • 2
  • Marco Andrello
    • 10
  • Alicia Dalongeville
    • 3
  • Stéphanie Manel
    • 4
  • David Mouillot
    • 5
  • Frédéric Guichard
    • 6
  • Isabelle M. Côté
    • 7
  • Janelle M. R. Curtis
    • 8
  • Louis Bernatchez
    • 9
  • Marie-Josée Fortin
    • 1
  1. 1.Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoCanada
  2. 2.Département de BiologieUniversité LavalQuébecCanada
  3. 3.Department of Botany and ZoologyStellenbosch UniversityStellenboschSouth Africa
  4. 4.CEFE, PSL Research University, EPHE, CNRS, Université de MontpellierUniversité Paul Valery Montpellier 3, IRDMontpellierFrance
  5. 5.MARBECUniv. Montpellier, CNRS, Ifremer, IRDMontpellierFrance
  6. 6.Department of BiologyMcGill UniversityMontrealCanada
  7. 7.Department of Biological SciencesSimon Fraser UniversityBurnabyCanada
  8. 8.Pacific Biological Station, Ecosystem SciencesFisheries and Oceans CanadaNanaimoCanada
  9. 9.Institut de Biologie Intégrative et des Systèmes, Université LavalQuébecCanada
  10. 10.MARBEC, Univ. MontpellierCNRS, IfremerIRDFrance
  11. 11.Department of Biological SciencesUniversity of New BrunswickSaint JohnCanada

Personalised recommendations