Population Genomics: Advancing Understanding of Nature

  • Gordon LuikartEmail author
  • Marty Kardos
  • Brian K. Hand
  • Om P. Rajora
  • Sally N. Aitken
  • Paul A. Hohenlohe
Part of the Population Genomics book series (POGE)


Population genomics is advancing our understanding of evolution, ecology, conservation, agriculture, forestry, and human health by allowing new and long-standing questions to be addressed with unprecedented power and accuracy. These advances result from plummeting costs for DNA sequencing, which makes genotyping feasible for hundreds to millions of individuals and loci, and also allows for the study of variation in gene expression, epigenetic variation, and proteins. The increased power also results from the development of innovative software, statistical approaches, and models to extract information from massive next-generation sequencing datasets. Among the most exciting developments are conceptually novel approaches that are advancing understanding about inbreeding and outbreeding depression, adaptive gene flow, population demographic history, and the genomic basis of local adaptation and speciation. Remaining challenges in applying genomics to natural and managed populations include the limited understanding and availability of validated bioinformatics pipelines for genotyping and analyzing genomic data. We also lack knowledge of best practices and general guidelines for filtering and genotyping genomic data including restriction site-associated DNA sequences (RAD), targeted DNA capture, and pooled sequencing. Finally, we emphasize the need for continued rigorous teaching of population genetics theory, so that the next generation of population genomicists can ask well-informed questions and interpret next-generation sequence datasets.


Adaptation Community genetics Conservation genetics Ecological genomics Epigenetics Evolutionary genomics Landscape genomics Population genetics Selection detection 



We thank G. McKinney for helpful comments and information on linkage mapping and Fred Allendorf for discussions and ideas regarding population genomics concepts and definitions. GL, MK, and BKH were supported in part by funding from US National Science Foundation grants DEB-1258203 and DoB-1639014. Montana Fish Wildlife and Parks provided supported GL and MK through contract #199101903. GL and BKH were also supported in part by funding from NASA grant number NNX14AB84G. OPR received support from a Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant RGPIN 2017-04589. PAH received support from National Science Foundation grants DEB-1316549 and DEB-1655809.


  1. Afgan E, Baker D, van den Beek M, et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids Res. 2016;44:W3–W10.PubMedPubMedCentralGoogle Scholar
  2. Ahrens CW, Rymer PD, Stow A, et al. The search for loci under selection: trends, biases and progress. Mol Ecol. 2018;27:1342–56.PubMedGoogle Scholar
  3. Alachiotis N, Pavlidis P. RAiSD detects positive selection based on multiple signatures of a selective sweep and SNP vectors. Commun Biol. 2018;1:79.PubMedPubMedCentralGoogle Scholar
  4. Ali OA, O’Rourke SM, Amish SJ, et al. RAD capture (rapture): flexible and efficient sequence-based genotyping. BioRxiv. 2015;52:4–7.Google Scholar
  5. Allendorf FW. Genetics and the conservation of natural populations: allozymes to genomes. Mol Ecol. 2017;26:420–30.PubMedGoogle Scholar
  6. Allendorf FW, Hohenlohe PA, Luikart G. Genomics and the future of conservation genetics. Nat Rev Genet. 2010;11:697–709.PubMedGoogle Scholar
  7. Allendorf FW, et al. Conservation and the genetics of populations. Hoboken: Wiley; 2013.Google Scholar
  8. Aller EST, Jagd LM, Kliebenstein DJ, Burow M. Comparison of the relative potential for epigenetic and genetic variation to contribute to trait stability. G3. 2018;8:1733–46.PubMedGoogle Scholar
  9. Amaral AJ, Megens H-J, Crooijmans RPMA, Heuven HCM, Groenen MAM. Linkage disequilibrium decay and haplotype block structure in the pig. Genetics. 2008;179:569–79.PubMedPubMedCentralGoogle Scholar
  10. Ameur A, Kloosterman WP, Hestand MS. Single-molecule sequencing: towards clinical applications. Trends Biotechnol. 2018. In press.Google Scholar
  11. Amores A, Catchen J, Ferrara A, Fontenot Q, Postlethwait JH. Genome evolution and meiotic maps by massively parallel DNA sequencing: spotted gar, an outgroup for the teleost genome duplication. Genetics. 2011;188:799–808.PubMedPubMedCentralGoogle Scholar
  12. Andrews KR, Luikart G. Recent novel approaches for population genomics data analysis. Mol Ecol. 2014;23:1661–7.PubMedGoogle Scholar
  13. Andrews KR, Good JM, Miller MR, Luikart G, Hohenlohe PA. Harnessing the power of RADseq for ecological and evolutionary genomics. Nat Rev Genet. 2016;17:81–92.PubMedPubMedCentralGoogle Scholar
  14. Armengaud J. Next-generation proteomics faces new challenges in environmental biotechnology. Curr Opin Biotechnol. 2016;38:174–82.PubMedGoogle Scholar
  15. Armstrong C, Richardson DS, Hipperson H, et al. Genomic associations with bill length and disease reveal drift and selection across island bird populations. Evol Lett. 2018;2(1):22–36.PubMedPubMedCentralGoogle Scholar
  16. Axelsson E, Ratnakumar A, Arendt ML, et al. The genomic signature of dog domestication reveals adaptation to a starch-rich diet. Nature. 2013;495:360–4.PubMedGoogle Scholar
  17. Baetscher DS, Clemento AJ, Ng TC, Anderson EC, Garza JC. Microhaplotypes provide increased power from short-read DNA sequences for relationship inference. Mol Ecol Resour. 2018;18:296–305.PubMedGoogle Scholar
  18. Balkenhol N, Dudaniec RY, Krutovsky KV, Johnson JS, Cairns DM, Segelbacher G, et al. Landscape genomics: understanding relationships between environmental heterogeneity and genomic characteristics of populations. In: Om PR, editor. Population genomics: concepts, approaches and applications. Cham: Springer International Publishing AG; 2017. Scholar
  19. Barson NJ, Aykanat T, Hindar K, et al. Sex-dependent dominance at a single locus maintains variation in age at maturity in salmon. Nature. 2015;528:405–8.PubMedGoogle Scholar
  20. Beichman AC, Phung TN, Lohmueller KE. Comparison of single genome and allele frequency data reveals discordant demographic histories. G3. 2017;7:3605–20.PubMedGoogle Scholar
  21. Beja-Pereira A, Luikart G, England PR, et al. Gene-culture coevolution between cattle milk protein genes and human lactase genes. Nat Genet. 2003;35:311–3.PubMedGoogle Scholar
  22. Beja-Pereira A, et al. Advancing ecological understandings through technological transformations in noninvasive genetics. Mol Ecol Resour. 2009;9:1279–301.PubMedGoogle Scholar
  23. Ben Maamar M, Sadler-Riggleman I, Beck D, Skinner MK. Epigenetic transgenerational inheritance of altered sperm histone retention sites. Sci Rep. 2018;8:5308.PubMedPubMedCentralGoogle Scholar
  24. Benestan LM, Ferchaud AL, Hohenlohe PA, et al. Conservation genomics of natural and managed populations: building a conceptual and practical framework. Mol Ecol. 2016;25:2967–77.PubMedGoogle Scholar
  25. Bérénos C, Ellis PA, Pilkington JG, et al. Heterogeneity of genetic architecture of body size traits in a free-living population. Mol Ecol. 2015;24:1810–30.PubMedPubMedCentralGoogle Scholar
  26. Bérénos C, Ellis PA, Pilkington JG, Pemberton JM. Genomic analysis reveals depression due to both individual and maternal inbreeding in a free-living mammal population. Mol Ecol. 2016;25:3152–68.PubMedPubMedCentralGoogle Scholar
  27. Berg JJ, Coop G. A population genetic signal of polygenic adaptation. PLoS Genet. 2014;10:e1004412.PubMedPubMedCentralGoogle Scholar
  28. Berthelot C, Brunet F, Chalopin D, et al. The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates. Nat Commun. 2014;5:3657.PubMedPubMedCentralGoogle Scholar
  29. Betts A, Gray C, Zelek M, MacLean RC, King KC. High parasite diversity accelerates host adaptation and diversification. Science. 2018;360:907–11.Google Scholar
  30. Bi K, Vanderpool D, Singhal S, et al. Transcriptome-based exon capture enables highly cost-effective comparative genomic data collection at moderate evolutionary scales. BMC Genomics. 2012;13:403.PubMedPubMedCentralGoogle Scholar
  31. Biron D, et al. Population proteomics: an emerging discipline to study metapopulation ecology. Proteomics. 2006;6:1712–5.PubMedGoogle Scholar
  32. Black WC, Baer CF, Antolin MF, DuTeau NM. Population genomics : genome-wide sampling of insect populations. Annu Rev Entomol. 2001;46:441–69.PubMedGoogle Scholar
  33. Blankenberg D, Von KG, Coraor N, et al. Galaxy: a web-based genome analysis tool for experimentalists. Curr Protoc Mol Biol. 2010;89:1–21.Google Scholar
  34. Blanquart F, Kaltz O, Nuismer SL, Gandon S. A practical guide to measuring local adaptation. Ecol Lett. 2013;16:1195–205.PubMedGoogle Scholar
  35. Boitard S, Rodríguez W, Jay F, Mona S, Austerlitz F. Inferring population size history from large samples of genome-wide molecular data – an approximate Bayesian computation approach. PLoS Genet. 2016;12:e1005877.PubMedPubMedCentralGoogle Scholar
  36. Bonin A, Nicole F, Pompanon F, Miaud C, Taberlet P. Population adaptive index: a new method to help measure intraspecific genetic diversity and prioritize populations for conservation. Conserv Biol. 2007;21:697–708.PubMedGoogle Scholar
  37. Bos K, et al. Parallel detection of ancient pathogens via array-based DNA capture. Philos Trans R Soc Lond B Biol Sci. 2015;370:20130375.PubMedPubMedCentralGoogle Scholar
  38. Bourret V, Dionne M, Bernatchez L. Detecting genotypic changes associated with selective mortality at sea in Atlantic salmon: polygenic multilocus analysis surpasses genome scan. Mol Ecol. 2014;23:4444–57.PubMedGoogle Scholar
  39. Boyle EA, Li YI, Pritchard JK. An expanded view of complex traits: from polygenic to omnigenic. Cell. 2017;169:1177–86.PubMedPubMedCentralGoogle Scholar
  40. Brauer CJ, Unmack PJ, Smith S, Bernatchez L, Beheregaray LB. On the roles of landscape heterogeneity and environmental variation in determining population genomic structure in a dendritic system. Mol Ecol. 2018;27:3484–97.PubMedGoogle Scholar
  41. Brelsford A, Toews DPL, Irwin DE. Admixture mapping in a hybrid zone reveals loci associated with avian feather coloration. Proc Roy Soc B Biol Sci. 2017;284:20171106.Google Scholar
  42. Brieuc MSO, Ono K, Drinan DP, Naish KA. Integration of random forest with population-based outlier analyses provides insight on the genomic basis and evolution of run timing in Chinook salmon (Oncorhynchus tshawytscha). Mol Ecol. 2015;24:2729–46.PubMedGoogle Scholar
  43. Browning SR, Browning BL. Accurate non-parametric estimation of recent effective population size from segments of identity by descent. Am J Hum Genet. 2015;97:404–18.PubMedPubMedCentralGoogle Scholar
  44. Bürger R, Akerman A. The effects of linkage and gene flow on local adaptation: a two-locus continent-island model. Theor Popul Biol. 2011;80:272–88.PubMedPubMedCentralGoogle Scholar
  45. Burri R, Nater A, Kawakami T, et al. Linked selection and recombination rate variation drive the evolution of the genomic landscape of differentiation across the speciation continuum of Ficedula flycatchers. Genome Res. 2015;25:1656–65.PubMedPubMedCentralGoogle Scholar
  46. Burri R, Antoniazza S, Gaigher A, et al. The genetic basis of color-related local adaptation in a ring-like colonization around the Mediterranean. Evolution. 2016;70:140–53.PubMedGoogle Scholar
  47. Cabrera AA, Palsbøll PJ. Inferring past demographic changes from contemporary genetic data: a simulation-based evaluation of the ABC methods implemented in diyabc. Mol Ecol Resour. 2017;17:e94–e110.PubMedGoogle Scholar
  48. Cammen KM, Schultz TF, Don Bowen W, et al. Genomic signatures of population bottleneck and recovery in Northwest Atlantic pinnipeds. Ecol Evol. 2018;8:6599–614.PubMedPubMedCentralGoogle Scholar
  49. Campana MG, Hawkins MTR, Henson LH, et al. Simultaneous identification of host, ectoparasite and pathogen DNA via in-solution capture. Mol Ecol Resour. 2016;16:1224–39.PubMedGoogle Scholar
  50. Campbell LJ, Hammond SA, Price SJ, et al. A novel approach to wildlife transcriptomics provides evidence of disease-mediated differential expression and changes to the microbiome of amphibian populations. Mol Ecol. 2018;27:1413–27.PubMedGoogle Scholar
  51. Campos JL, Halligan DL, Haddrill PR, Charlesworth B. The relation between recombination rate and patterns of molecular evolution and variation in drosophila melanogaster. Mol Biol Evol. 2014;31:1010–28.PubMedPubMedCentralGoogle Scholar
  52. Candy JR, Campbell NR, Grinnell MH, et al. Population differentiation determined from putative neutral and divergent adaptive genetic markers in Eulachon (Thaleichthys pacificus, Osmeridae), an anadromous Pacific smelt. Mol Ecol Resour. 2015;15:1421–34.PubMedGoogle Scholar
  53. Carneiro M, Albert FW, Afonso S, et al. The genomic architecture of population divergence between subspecies of the European rabbit. PLoS Genet. 2014;10:e1003519.PubMedPubMedCentralGoogle Scholar
  54. Castellano S, Parra G, Sanchez-Quinto FA, et al. Patterns of coding variation in the complete exomes of three Neanderthals. Proc Natl Acad Sci. 2014;111:6666–71.PubMedGoogle Scholar
  55. Catchen J, Hohenlohe PA, Bassham S, Amores A, Cresko WA. Stacks: an analysis tool set for population genomics. Mol Ecol. 2013;22:3124–40.PubMedPubMedCentralGoogle Scholar
  56. Catchen JM, Hohenlohe PA, Bernatchez L, et al. Unbroken: RADseq remains a powerful tool for understanding the genetics of adaptation in natural populations. Mol Ecol Resour. 2017;17:362–5.PubMedGoogle Scholar
  57. Ceballos FC, Joshi PK, Clark DW, Ramsay M, Wilson JF. Runs of homozygosity: windows into population history and trait architecture. Nat Rev Genet. 2018;19:220–34.PubMedGoogle Scholar
  58. Charlesworth B. Fundamental concepts in genetics: effective population size and patterns of molecular evolution and variation. Nat Rev Genet. 2009;10:195–205.PubMedGoogle Scholar
  59. Charlesworth B. Molecular population genomics: a short history. Genet Res. 2010;92:397–411.Google Scholar
  60. Charlesworth D, Willis JH. The genetics of inbreeding depression. Nat Rev Genet. 2009;10:783–96.PubMedGoogle Scholar
  61. Charlesworth B, Morgan MT, Charlesworth D. The effect of deleterious mutations on neutral molecular variation. Genetics. 1993;134:1289–303.PubMedPubMedCentralGoogle Scholar
  62. Charlesworth B, Charlesworth D, Coyne JA, Langley CH. Hubby and Lewontin on protein variation in natural populations: when molecular genetics came to the rescue of population genetics. Genetics. 2016;203:1497–503.PubMedPubMedCentralGoogle Scholar
  63. Charlesworth D, Barton NH, Charlesworth B. The sources of adaptive variation. Proc Roy Soc B Biol Sci. 2017;284:20162864.Google Scholar
  64. Chen Z, Farrell AP, Matala A, Hoffman N, Narum SR. Physiological and genomic signatures of evolutionary thermal adaptation in redband trout from extreme climates. Evol Appl. 2018. Scholar
  65. Chevalier F, Martin O, Rofidal V, et al. Proteomic investigation of natural variation between Arabidopsis ecotypes. Proteomics. 2004;4:1372–81.PubMedGoogle Scholar
  66. Chiou KL, Bergey CM. Methylation-based enrichment facilitates low-cost, noninvasive genomic scale sequencing of populations from feces. Sci Rep. 2018;8:1975.PubMedPubMedCentralGoogle Scholar
  67. Choi Y, Chan AP. PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics. 2015;31:2745–7.PubMedPubMedCentralGoogle Scholar
  68. Christie MR, Marine ML, Fox SE, French RA, Blouin MS. A single generation of domestication heritably alters the expression of hundreds of genes. Nat Commun. 2016;7:10676.PubMedPubMedCentralGoogle Scholar
  69. Chu AY, Tin A, Schlosser P, et al. Epigenome-wide association studies identify DNA methylation associated with kidney function. Nat Commun. 2017;8:1286.PubMedPubMedCentralGoogle Scholar
  70. Colinet H, Pineau C, Com E. Large scale phosphoprotein profiling to explore Drosophila cold acclimation regulatory mechanisms. Sci Rep. 2017;7:1713.PubMedPubMedCentralGoogle Scholar
  71. Conte GL, Hodgins KA, Yeaman S, et al. Bioinformatically predicted deleterious mutations reveal complementation in the interior spruce hybrid complex. BMC Genomics. 2017;18:970.PubMedPubMedCentralGoogle Scholar
  72. Cooke NP, Nakagome S. Fine-tuning of approximate Bayesian computation for human population genomics. Curr Opin Genet Dev. 2018;53:60–9.PubMedGoogle Scholar
  73. Coop G, Witonsky D, Di Rienzo A, Pritchard JK. Using environmental correlations to identify loci underlying local adaptation. Genetics. 2010;185:1411–23.PubMedPubMedCentralGoogle Scholar
  74. Corbett-Detig RB, Hartl DL, Sackton TB. Natural selection constrains neutral diversity across a wide range of species. PLoS Biol. 2015;13:e1002112.PubMedPubMedCentralGoogle Scholar
  75. Cornuet JM, Luikart G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics. 1996;144:2001–14.PubMedPubMedCentralGoogle Scholar
  76. Cosart T, Beja-Pereira A, Chen S, et al. Exome-wide DNA capture and next generation sequencing in domestic and wild species. BMC Genomics. 2011;12:347–55.PubMedPubMedCentralGoogle Scholar
  77. Cruickshank TE, Hahn MW. Reanalysis suggests that genomic islands of speciation are due to reduced diversity, not reduced gene flow. Mol Ecol. 2014;23:3133–57.PubMedGoogle Scholar
  78. Cutter AD, Payseur BA. Genomic signatures of selection at linked sites: unifying the disparity among species. Nat Rev Genet. 2013;14:262–74.PubMedPubMedCentralGoogle Scholar
  79. Dalongeville A, Benestan L, Mouillot D, Lobreaux S, Manel S. Combining six genome scan methods to detect candidate genes to salinity in the Mediterranean striped red mullet (Mullus surmuletus). BMC Genomics. 2018;19:217.PubMedPubMedCentralGoogle Scholar
  80. De Kort H, Baguette M, Prunier JG, et al. Genetic costructure in a meta-community under threat of habitat fragmentation. Mol Ecol. 2018;27:2193–203.PubMedGoogle Scholar
  81. De La Torre AR, Birol I, Bousquet J, et al. Insights into conifer giga-genomes. Plant Physiol. 2014;166:1724–32.PubMedPubMedCentralGoogle Scholar
  82. De Mita S, Thuillet AC, Gay L, et al. Detecting selection along environmental gradients: analysis of eight methods and their effectiveness for outbreeding and selfing populations. Mol Ecol. 2013;22:1383–99.PubMedGoogle Scholar
  83. Degiorgio M, Huber CD, Hubisz MJ, Hellmann I, Nielsen R. SweepFinder2: increased sensitivity, robustness and flexibility. Bioinformatics. 2016;32:1895–7.PubMedGoogle Scholar
  84. DeLong EF. The microbial ocean from genomes to biomes. Nature. 2009;459:200–6.PubMedGoogle Scholar
  85. Denef VJ. Peering into the genetic makeup of natural microbial populations using metagenomics. In: Polz MF, Om PR, editors. Population genomics: microorganisms. Cham: Springer International Publishing AG; 2018. Scholar
  86. Di G, Miao X, Ke C, et al. Protein changes in abalone foot muscle from three geographical populations of Haliotis diversicolor based on proteomic approach. Ecol Evol. 2016;6:3645–57.PubMedPubMedCentralGoogle Scholar
  87. Dinsdale EA, Edwards RA, Hall D, et al. Functional metagenomic profiling of nine biomes. Nature. 2008;452:629–32.PubMedGoogle Scholar
  88. Do C, Waples RS, Peel D, et al. NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Resour. 2014;14:209–14.PubMedGoogle Scholar
  89. Dobrynin P, Liu S, Tamazian G, et al. Genomic legacy of the African cheetah, Acinonyx jubatus. Genome Biol. 2015;16:277.PubMedPubMedCentralGoogle Scholar
  90. Dowle EJ, Pochon X, C Banks J, Shearer K, Wood SA. Targeted gene enrichment and high-throughput sequencing for environmental biomonitoring: a case study using freshwater macroinvertebrates. Mol Ecol Resour. 2016;16:1240–54.PubMedGoogle Scholar
  91. Dupuis JR, Oliver JC, Brunet BMT, et al. Genomic data indicate ubiquitous evolutionary distinctiveness among populations of California metalmark butterflies. Conserv Genet. 2018. In press.Google Scholar
  92. Duranton M, Allal F, Fraïsse C, et al. The origin and remolding of genomic islands of differentiation in the European sea bass. Nat Commun. 2018;9:2518.PubMedPubMedCentralGoogle Scholar
  93. Eaton DAR. PyRAD: assembly of de novo RADseq loci for phylogenetic analyses. Bioinformatics. 2014;30:1844–9.PubMedGoogle Scholar
  94. Edwards SV, Potter S, Schmitt CJ, Bragg JG, Moritz C. Reticulation, divergence, and the phylogeography–phylogenetics continuum. Proc Natl Acad Sci. 2016;113:8025–32.PubMedGoogle Scholar
  95. Eichten SR, Briskine R, Song J, et al. Epigenetic and genetic influences on DNA methylation variation in maize populations. Plant Cell. 2013;25:2783–97.PubMedPubMedCentralGoogle Scholar
  96. Elbasyoni IS, Lorenz AJ, Guttieri M, et al. A comparison between genotyping-by-sequencing and array-based scoring of SNPs for genomic prediction accuracy in winter wheat. Plant Sci. 2018;270:123–30.PubMedGoogle Scholar
  97. Ellegren H. Genome sequencing and population genomics in non-model organisms. Trends Ecol Evol. 2014;29:51–63.Google Scholar
  98. Ellegren H, Smeds L, Burri R, et al. The genomic landscape of species divergence in Ficedula flycatchers. Nature. 2012;491:756–60.PubMedGoogle Scholar
  99. Elleouet JS, Aitken SN. Exploring approximate Bayesian computation for inferring recent demographic history with genomic markers in nonmodel species. Mol Ecol Resour. 2018;18:525–40.PubMedGoogle Scholar
  100. Epstein B, et al. Rapid evolutionary response to a transmissible cancer in Tasmanian devils. Microbiome. 2016;6(1):168.Google Scholar
  101. Farek J, Hughes D, Mansfield A, et al. xAtlas: scalable small variant calling across heterogeneous next-generation sequencing experiments. BioRxiv. 2018:295071.Google Scholar
  102. Faria NR, Kraemer MUG, Hill S, et al. Genomic and epidemiological monitoring of yellow fever virus transmission potential. BioRxiv. 2018:299842.Google Scholar
  103. Fay JC, Wu CI. Hitchhiking under positive Darwinian selection. Genetics. 2000;155:1405–13.PubMedPubMedCentralGoogle Scholar
  104. Feau N, Beauseigle S, Bergeron M-J, et al. Genome-enhanced detection and identification (GEDI) of plant pathogens. PeerJ. 2018;6:e4392.PubMedPubMedCentralGoogle Scholar
  105. Feder JL, Egan SP, Nosil P. The genomics of speciation-with-gene-flow. Trends Genet. 2012;28:342–50.PubMedGoogle Scholar
  106. Ferrer-Admetlla A, Liang M, Korneliussen T, Nielsen R. On detecting incomplete soft or hard selective sweeps using haplotype structure. Mol Biol Evol. 2014;31:1275–91.PubMedPubMedCentralGoogle Scholar
  107. Fisher R. The theory of inbreeding. 2nd ed. Edinburgh: Oliver & Boyd; 1965.Google Scholar
  108. Flanagan SP, Forester BR, Latch EK, Aitken SN, Hoban S. Guidelines for planning genomic assessment and monitoring of locally adaptive variation to inform species conservation. Evol Appl. 2018;11:1035–52.PubMedGoogle Scholar
  109. Foll M, Fischer MC, Heckel G, Excoffier L. Estimating population structure from AFLP amplification intensity. Mol Ecol. 2010;19:4638–47.PubMedGoogle Scholar
  110. Forester BR, Jones MR, Joost S, Landguth EL, Lasky JR. Detecting spatial genetic signatures of local adaptation in heterogeneous landscapes. Mol Ecol. 2016;25:104–20.PubMedGoogle Scholar
  111. Forester BR, Lasky JR, Wagner HH, Urban DL. Comparing methods for detecting multilocus adaptation with multivariate genotype-environment associations. Mol Ecol. 2018;27:2215–33.PubMedGoogle Scholar
  112. Forstmeier W, Schielzeth H, Mueller JC, Ellegren H, Kempenaers B. Heterozygosity-fitness correlations in zebra finches: microsatellite markers can be better than their reputation. Mol Ecol. 2012;21:3237–49.PubMedGoogle Scholar
  113. Foust CM, Preite V, Schrey AW, et al. Genetic and epigenetic differences associated with environmental gradients in replicate populations of two salt marsh perennials. Mol Ecol. 2016;25:1639–52.PubMedGoogle Scholar
  114. Fraïsse C, Roux C, Gagnaire P-A, et al. The divergence history of European blue mussel species reconstructed from approximate Bayesian computation: the effects of sequencing techniques and sampling strategies. PeerJ. 2018;6:e5198.PubMedPubMedCentralGoogle Scholar
  115. Franklin IR. The distribution of the proportion of the genome which is homozygous by descent in inbred individuals. Theor Popul Biol. 1977;11:60–80.PubMedGoogle Scholar
  116. Frantz LAF, Mullin VE, Pionnier-Capitan M, et al. Genomic and archaeological evidence suggests a dual origin of domestic dogs. Science. 2016;352:1228–31.PubMedGoogle Scholar
  117. Frichot E, Schoville SD, Bouchard G, François O. Testing for associations between loci and environmental gradients using latent factor mixed models. Mol Biol Evol. 2013;30:1687–99.PubMedPubMedCentralGoogle Scholar
  118. Funk WC, McKay JK, Hohenlohe PA, Allendorf FW. Harnessing genomics for delineating conservation units. Trends Ecol Evol. 2012;27:489–96.PubMedPubMedCentralGoogle Scholar
  119. Funk WC, Forester BR, Converse SJ, Darst C, Morey S. Improving conservation policy with genomics: a guide to integrating adaptive potential into U.S. Endangered Species Act decisions for conservation practitioners and geneticists. Conserv Genet. 2018. In press.Google Scholar
  120. Gamboa M, Tsuchiya MC, Matsumoto S, Iwata H, Watanabe K. Differences in protein expression among five species of stream stonefly (Plecoptera) along a latitudinal gradient in Japan. Arch Insect Biochem Physiol. 2017;96:e21422.Google Scholar
  121. Gapp K, Bohacek J. Epigenetic germline inheritance in mammals: looking to the past to understand the future. Genes Brain Behav. 2018;17:e12407.PubMedGoogle Scholar
  122. Gapp K, Jawaid A, Sarkies P, et al. Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat Neurosci. 2014;17:667–9.PubMedPubMedCentralGoogle Scholar
  123. Garcia SL, Stevens SLR, Crary B, Martinez-Garcia M, Stepanauskas R, et al. Contrasting patterns of genome-level diversity across distinct co-occurring bacterial populations. ISME J. 2018;12:742–55. Scholar
  124. Garner BA, Hand BK, Amish SJ, et al. Genomics in conservation: case studies and bridging the gap between data and application. Trends Ecol Evol. 2016;31:81–2.PubMedGoogle Scholar
  125. Gasc C, Peyretaillade E, Peyret P. Sequence capture by hybridization to explore modern and ancient genomic diversity in model and nonmodel organisms. Nucleic Acids Res. 2016;44:4504–18.PubMedPubMedCentralGoogle Scholar
  126. Gauthier J, Mouden C, Suchan T, et al. DiscoSnp-RAD: de novo detection of small variants for population genomics. BioRxiv. 2017:216747.Google Scholar
  127. Gavery MR, Roberts SB. Epigenetic considerations in aquaculture. PeerJ. 2017;5:e4147.PubMedPubMedCentralGoogle Scholar
  128. Geigl E-M, Grange T. Of cats and men: ancient dNA reveals how the cat conquered the ancient world. In: Lindqvist C, Om PR, editors. Paleogenomics. Cham: Springer International Publishing AG; 2018. Scholar
  129. Ghalambor CK, Hoke KL, Ruell EW, et al. Non-adaptive plasticity potentiates rapid adaptive evolution of gene expression in nature. Nature. 2015;525:372–5.PubMedGoogle Scholar
  130. Giardine B, Riemer C, Hardison RC, et al. Galaxy: a platform for interactive large-scale genome analysis. Genome Res. 2005;15:1451–5.PubMedPubMedCentralGoogle Scholar
  131. Gibson G. Population genetics and GWAS: a primer. PLoS Biol. 2018;16:e2005485.PubMedPubMedCentralGoogle Scholar
  132. Gilbert KJ, Whitlock MC. Evaluating methods for estimating local effective population size with and without migration. Evolution. 2015;69:2154–66.Google Scholar
  133. Gompert Z. A continuous correlated beta process model for genetic ancestry in admixed populations. PLoS One. 2016;11:e0151047.PubMedPubMedCentralGoogle Scholar
  134. Goudet J, Kay T, Weir BS. How to estimate kinship. Mol Ecol. 2018. In press.Google Scholar
  135. Gray MM, Granka JM, Bustamante CD, et al. Linkage disequilibrium and demographic history of wild and domestic canids. Genetics. 2009;181:1493–505.PubMedPubMedCentralGoogle Scholar
  136. Grossen C, Biebach I, Angelone-Alasaad S, Keller LF, Croll D. Population genomics analyses of European ibex species show lower diversity and higher inbreeding in reintroduced populations. Evol Appl. 2018;11:123–39.PubMedGoogle Scholar
  137. Gruber B, Unmack PJ, Berry OF, Georges A. dartr: an r package to facilitate analysis of SNP data generated from reduced representation genome sequencing. Mol Ecol Resour. 2018;18:691–9.PubMedGoogle Scholar
  138. Guan Y. Detecting structure of haplotypes and local ancestry. Genetics. 2014;196:625–42.PubMedPubMedCentralGoogle Scholar
  139. Gugger PF, Fitz-Gibbon S, Pellegrini M, Sork VL. Species-wide patterns of DNA methylation variation in Quercus lobata and their association with climate gradients. Mol Ecol. 2016;25:1665–80.PubMedGoogle Scholar
  140. Gunther T, Coop G. Robust identification of local adaptation from allele frequencies. Genetics. 2013;195:205–20.PubMedPubMedCentralGoogle Scholar
  141. Gur A, Tzuri G, Meir A, et al. Genome-wide linkage-disequilibrium mapping to the candidate gene level in melon (Cucumis melo). Sci Rep. 2017;7:9770.PubMedPubMedCentralGoogle Scholar
  142. Gutenkunst RN, Hernandez RD, Williamson SH, Bustamante CD. Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data. PLoS Genet. 2009;5:e1000695.PubMedPubMedCentralGoogle Scholar
  143. Hackinger S, Kraaijenbrink T, Xue Y, et al. Wide distribution and altitude correlation of an archaic high-altitude-adaptive EPAS1 haplotype in the Himalayas. Hum Genet. 2016;135:393–402.PubMedPubMedCentralGoogle Scholar
  144. Hancock AM, et al. Adaptation to climate across the Arabidopsis thaliana genome. Science. 2011;334:83–6.PubMedGoogle Scholar
  145. Hand BK, Hether TD, Kovach RP, et al. Genomics and introgression: discovery and mapping of thousands of species-diagnostic SNPs using RAD sequencing. Curr Zool. 2015a;61:146–54.Google Scholar
  146. Hand BK, Lowe WH, Kovach RP, Muhlfeld CC, Luikart G. Landscape community genomics: understanding eco-evolutionary processes in complex environments. Trends Ecol Evol. 2015b;30:161–8.Google Scholar
  147. Hanghøj K, Orlando L, Hanghøj K, Orlando ÁL. Ancient epigenomics. In: Lindqvist C, Om PR, editors. Paleogenomics. Cham: Springer International Publishing AG; 2018. Scholar
  148. Hansen MM. Expression of interest: transcriptomics and the designation of conservation units. Mol Ecol. 2010;19:1757–9.PubMedGoogle Scholar
  149. Hare MP, Nunney L, Schwartz MK, et al. Understanding and estimating effective population size for practical application in marine species management. Conserv Biol. 2011;25:438–49.PubMedGoogle Scholar
  150. Harr B. Genomic islands of differentiation between house mouse subspecies. Genome Res. 2006;16:730–7.PubMedPubMedCentralGoogle Scholar
  151. Harris K, Nielsen R. Inferring demographic history from a spectrum of shared haplotype lengths. PLoS Genet. 2013;9:e1003521.PubMedPubMedCentralGoogle Scholar
  152. Harris C, Rousset F, Morlais I, Fontenille D, Cohuet A. Low linkage disequilibrium in wild Anopheles gambiae s.l. populations. BMC Genet. 2010;11:81.PubMedPubMedCentralGoogle Scholar
  153. Harrisson KA, Amish SJ, Pavlova A, et al. Signatures of polygenic adaptation associated with climate across the range of a threatened fish species with high genetic connectivity. Mol Ecol. 2017;26:6253–69.PubMedGoogle Scholar
  154. Haussler D, O’Brien SJ, Ryder OA, et al. Genome 10K: a proposal to obtain whole-genome sequence for 10000 vertebrate species. J Hered. 2009;100:659–74.Google Scholar
  155. Hedrick PW, Garcia-Dorado A. Understanding inbreeding depression, purging, and genetic rescue. Trends Ecol Evol. 2016;31:940–52.PubMedGoogle Scholar
  156. Heintzman PD, Soares AER, Chang D, Shapiro B. Paleogenomics. Rev Cell Biol Mol Med. 2015;1:243–67.Google Scholar
  157. Hendricks S, Anderson EC, Antao T, et al. Recent advances in conservation and population genomics data analysis. Evol Appl. 2018;11:1197–211.PubMedCentralGoogle Scholar
  158. Hermisson J, Pennings PS. Soft sweeps: molecular population genetics of adaptation from standing genetic variation. Genetics. 2005;169:2335–52.PubMedPubMedCentralGoogle Scholar
  159. Hermisson J, Pennings PS. Soft sweeps and beyond: understanding the patterns and probabilities of selection footprints under rapid adaptation. Methods Ecol Evol. 2017;8:700–16.Google Scholar
  160. Hidalgo-Galiana A, Monge M, Biron DG, et al. Protein expression parallels thermal tolerance and ecologic changes in the diversification of a diving beetle species complex. Heredity. 2016;116:114–23.PubMedGoogle Scholar
  161. Hoban S. Integrative conservation genetics: prioritizing populations using climate predictions, adaptive potential and habitat connectivity. Mol Ecol Resour. 2018;18:14–7.PubMedGoogle Scholar
  162. Hoban SM, Gaggiotti OE, Bertorelle G. The number of markers and samples needed for detecting bottlenecks under realistic scenarios, with and without recovery: a simulation-based study. Mol Ecol. 2013;22:3444–50.PubMedGoogle Scholar
  163. Hoban S, Kelley JL, Lotterhos KE, et al. Finding the genomic basis of local adaptation: pitfalls, practical solutions, and future directions. Am Nat. 2016;188:379–97.PubMedPubMedCentralGoogle Scholar
  164. Hodel RG, Chandler LM, Fahrenkrog AM, et al. Linking genome signatures of selection and adaptation in non-model plants: exploring potential and limitations in the angiosperm Amborella. Curr Opin Plant Biol. 2018;42:81–9.PubMedGoogle Scholar
  165. Hodges E, Xuan Z, Balija V, et al. Genome-wide in situ exon capture for selective resequencing. Nat Genet. 2007;39:1522–7.PubMedGoogle Scholar
  166. Hoffberg SL, Kieran TJ, Catchen JM, et al. RADcap: sequence capture of dual-digest RADseq libraries with identifiable duplicates and reduced missing data. Mol Ecol Resour. 2016;16:1264–78.PubMedGoogle Scholar
  167. Hoffman JI, Simpson F, David P, et al. High-throughput sequencing reveals inbreeding depression in a natural population. Proc Natl Acad Sci. 2014;111:3775–80.PubMedGoogle Scholar
  168. Hogg JT. Mating in bighorn sheep: multiple creative male strategies. Science. 1984;225:526–9.PubMedGoogle Scholar
  169. Hohenlohe PA, Bassham S, Etter PD, et al. Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags. PLoS Genet. 2010a;6:e1000862.PubMedPubMedCentralGoogle Scholar
  170. Hohenlohe PA, Phillips PC, Cresko WA. Using population genomics to detect selection in natural populations: key concepts and methodological considerations. Int J Plant Sci. 2010b;171:1059–71.PubMedPubMedCentralGoogle Scholar
  171. Hohenlohe PA, Hand BK, Andrews KR, Luikart G. Population genomics provides key insights in ecology and evolution. In: Om PR, editor. Population genomics: concepts, approaches and applications. Cham: Springer International Publishing AG; 2018. Scholar
  172. Holliday JA, Ritland K, Aitken SN. Widespread, ecologically relevant genetic markers developed from association mapping of climate-related traits in Sitka spruce (Picea sitchensis). New Phytol. 2010;188:501–14.PubMedGoogle Scholar
  173. Holliday JA, Wang T, Aitken S. Predicting adaptive phenotypes from multilocus genotypes in Sitka spruce (Picea sitchensis) using random forest. G3. 2012;2:1085–93.PubMedGoogle Scholar
  174. Holliday JA, Hallerman EM, Haak DC. Genotyping and sequencing technologies in population genetics and genomics. In: Om PR, editor. Population genomics: concepts, approaches and applications. Cham: Springer International Publishing AG; 2018. Scholar
  175. Horsthemke B. A critical view on transgenerational epigenetic inheritance in humans. Nat Commun. 2018;9:2973.PubMedPubMedCentralGoogle Scholar
  176. Howard JT, Haile-Mariam M, Pryce JE, Maltecca C. Investigation of regions impacting inbreeding depression and their association with the additive genetic effect for United States and Australia Jersey dairy cattle. BMC Genomics. 2015;16:813.PubMedPubMedCentralGoogle Scholar
  177. Hu J, Barrett RDH. Epigenetics in natural animal populations. J Evol Biol. 2017;30:1612–32.PubMedGoogle Scholar
  178. Huber B, Whibley A, Poul YL, et al. Conservatism and novelty in the genetic architecture of adaptation in Heliconius butterflies. Heredity. 2015;114:515–24.PubMedPubMedCentralGoogle Scholar
  179. Huerta-Sánchez E, Jin X, Asan, et al. Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA. Nature. 2014;512:194–7.PubMedPubMedCentralGoogle Scholar
  180. Huisman J, Kruuk LEB, Ellis PA, Clutton-Brock T, Pemberton JM. Inbreeding depression across the lifespan in a wild mammal population. Proc Natl Acad Sci U S A. 2016;113:3585–90.PubMedPubMedCentralGoogle Scholar
  181. Humble E, Dasmahapatra KK, Martinez-Barrio A, et al. RAD sequencing and a hybrid antarctic fur seal genome assembly reveal rapidly decaying linkage disequilibrium, global population structure and evidence for inbreeding. G3. 2018;8:2709–22.PubMedGoogle Scholar
  182. Hunter ME, Hoban SM, Bruford MW, Segelbacher G, Bernatchez L. Next-generation conservation genetics and biodiversity monitoring. Evol Appl. 2018;11:1029–34.PubMedPubMedCentralGoogle Scholar
  183. Husby A, Kawakami T, Rönnegård L, et al. Genome-wide association mapping in a wild avian population identifies a link between genetic and phenotypic variation in a life-history trait. Proc Biol Sci. 2015;282:20150156.PubMedPubMedCentralGoogle Scholar
  184. Jensen JD, Foll M, Bernatchez L. The past, present and future of genomic scans for selection. Mol Ecol. 2016;25:1–4.PubMedGoogle Scholar
  185. Johnson EC, Evans LM, Keller MC. Relationships between estimated autozygosity and complex traits in the UK Biobank. PLoS Genet. 2018a;14:e1007556.PubMedPubMedCentralGoogle Scholar
  186. Johnson JS, Krutovsky KV, Rajora OP, Gaddis KD, Cairns DM. Advancing biogeography through population genomics. In: Om PR, editor. Population genomics: concepts, approaches and applications. Cham: Springer International Publishing AG; 2018b. Scholar
  187. Johnston SE, McEwan JC, Pickering NK, et al. Genome-wide association mapping identifies the genetic basis of discrete and quantitative variation in sexual weaponry in a wild sheep population. Mol Ecol. 2011;20:2555–66.PubMedGoogle Scholar
  188. Johnston SE, Gratten J, Berenos C, et al. Life history trade-offs at a single locus maintain sexually selected genetic variation. Nature. 2013;502:93–5.PubMedGoogle Scholar
  189. Jones MR, Good JM. Targeted capture in evolutionary and ecological genomics. Mol Ecol. 2016;25:185–202.PubMedGoogle Scholar
  190. Jones MR, Scott Mills L, Alves PC, et al. Adaptive introgression underlies polymorphic seasonal camouflage in snowshoe hares. Science. 2018;360:1355–8.PubMedGoogle Scholar
  191. Joost S, Bonin A, Bruford MW, et al. A spatial analysis method (SAM) to detect candidate loci for selection: towards a landscape genomics approach to adaptation. Mol Ecol. 2007;16:3955–69.PubMedGoogle Scholar
  192. Kabekkodu SP, Chakrabarty S, Ghosh S, Brand A, Satyamoorthy K. Epigenomics, pharmacoepigenomics, and personalized medicine in cervical cancer. Public Health Genomics. 2017;20:100–15.PubMedGoogle Scholar
  193. Kardos M, Shafer ABA. The peril of gene-targeted conservation. Trends Ecol Evol. 2018. Scholar
  194. Kardos M, Luikart G, Allendorf FW. Measuring individual inbreeding in the age of genomics: marker-based measures are better than pedigrees. Heredity. 2015a;115:63–72.PubMedPubMedCentralGoogle Scholar
  195. Kardos M, Luikart G, Bunch R, et al. Whole-genome resequencing uncovers molecular signatures of natural and sexual selection in wild bighorn sheep. Mol Ecol. 2015b;24:5616–32.PubMedGoogle Scholar
  196. Kardos M, Husby A, Mcfarlane SE, Qvarnstrom A, Ellegren H. Whole-genome resequencing of extreme phenotypes in collared flycatchers highlights the difficulty of detecting quantitative trait loci in natural populations. Mol Ecol Resour. 2016a;16:727–41.PubMedGoogle Scholar
  197. Kardos M, Taylor HR, Ellegren H, Luikart G, Allendorf FW. Genomics advances the study of inbreeding depression in the wild. Evol Appl. 2016b;9:1205–18.PubMedPubMedCentralGoogle Scholar
  198. Kardos M, Qvarnström A, Ellegren H. Inferring individual inbreeding and demographic history from segments of identity by descent in Ficedula flycatcher genome sequences. Genetics. 2017;205:1319–34.PubMedPubMedCentralGoogle Scholar
  199. Kardos M, Åkesson M, Fountain T, et al. Genomic consequences of intensive inbreeding in an isolated wolf population article. Nat Ecol Evol. 2018;2:124–31.PubMedGoogle Scholar
  200. Karr TL. Application of proteomics to ecology and population biology. Heredity. 2008;100:200–6.PubMedGoogle Scholar
  201. Kawakami T, Smeds L, Backström N, et al. A high-density linkage map enables a second-generation collared flycatcher genome assembly and reveals the patterns of avian recombination rate variation and chromosomal evolution. Mol Ecol. 2014;23:4035–58.PubMedPubMedCentralGoogle Scholar
  202. Keller LF, Waller DM. Inbreeding effects in wild populations. Trends Ecol Evol. 2002;17:230–41.Google Scholar
  203. Keller MC, Simonson MA, Ripke S, et al. Runs of homozygosity implicate autozygosity as a schizophrenia risk factor. PLoS Genet. 2012;8:e1002656.PubMedPubMedCentralGoogle Scholar
  204. Kelso J, Prüfer K. Ancient humans and the origin of modern humans. Curr Opin Genet Dev. 2014;29:133–8.PubMedGoogle Scholar
  205. Kijas JW. Detecting regions of homozygosity to map the cause of recessively inherited disease. Methods Mol Biol. 2013;1019:331–45.PubMedGoogle Scholar
  206. Kim Y, Stephan W. Detecting a local signature of genetic hitchhiking along a recombining chromosome. Genetics. 2002;160:765–77.PubMedPubMedCentralGoogle Scholar
  207. Kirin M, McQuillan R, Franklin CS, et al. Genomic runs of homozygosity record population history and consanguinity. PLoS One. 2010;5:e13996.PubMedPubMedCentralGoogle Scholar
  208. Kirkpatrick M. How and why chromosome inversions evolve. PLoS Biol. 2010;8:e1000501.PubMedPubMedCentralGoogle Scholar
  209. Knaus BJ, Grünwald NJ. vcfr: a package to manipulate and visualize variant call format data in R. Mol Ecol Resour. 2017;17:44–53.PubMedGoogle Scholar
  210. Knief U, Kempenaers B, Forstmeier W. Meiotic recombination shapes precision of pedigree- and marker-based estimates of inbreeding. Heredity. 2017;118:239–48.PubMedGoogle Scholar
  211. Kovach RP, Hand BK, Hohenlohe PA, et al. Vive la résistance: genome-wide selection against introduced alleles in invasive hybrid zones. Proc Roy Soc B Biol Sci. 2016;283:20161380.Google Scholar
  212. Kozakiewicz CP, Burridge CP, Funk WC, et al. Pathogens in space: advancing understanding of pathogen dynamics and disease ecology through landscape genetics. Evol Appl. 2018. In press.Google Scholar
  213. Kreiner JM, Stinchcombe JR, Wright SI. Population genomics of herbicide resistance: adaptation via evolutionary rescue. Annu Rev Plant Biol. 2018;69:611–35.PubMedGoogle Scholar
  214. Küpper C, Stocks M, Risse JE, et al. A supergene determines highly divergent male reproductive morphs in the ruff. Nat Genet. 2015;48:79–83.PubMedPubMedCentralGoogle Scholar
  215. Laforest-Lapointe I, Paquette A, Messier C, Kembel SW. Leaf bacterial diversity mediates plant diversity and ecosystem function relationships. Nature. 2017;546(7656):145. Scholar
  216. Lamichhaney S, Fan G, Widemo F, et al. Structural genomic changes underlie alternative reproductive strategies in the ruff (Philomachus pugnax). Nat Genet. 2015;48:84–8.PubMedGoogle Scholar
  217. Lan T, Lindqvist C. Paleogenomics: genome-scale analysis of ancient DNA and population and evolutionary genomic inferences. In: Om PR, editor. Population genomics: concepts, approaches and applications. Cham: Springer International Publishing AG; 2018. Scholar
  218. Lander ES, Botstein D. Homozygosity mapping: a way to map human recessive traits with the DNA of inbred children. Science. 1987;236:1567–70.PubMedGoogle Scholar
  219. Landry PA, Koskinen MT, Primmed CR. Deriving evolutionary relationships among populations using microsatellites and (δμ)2: all loci are equal, but some are more equal than others. Genetics. 2002;161:1339–47.PubMedPubMedCentralGoogle Scholar
  220. Laporte M, Pavey SA, Rougeux C, et al. RAD sequencing reveals within-generation polygenic selection in response to anthropogenic organic and metal contamination in North Atlantic Eels. Mol Ecol. 2016;25:219–37.PubMedGoogle Scholar
  221. Larson WA, Seeb LW, Everett MV, et al. Genotyping by sequencing resolves shallow population structure to inform conservation of Chinook salmon (Oncorhynchus tshawytscha). Evol Appl. 2014;7:355–69.PubMedPubMedCentralGoogle Scholar
  222. Larson WA, Limborg MT, McKinney GJ, et al. Genomic islands of divergence linked to ecotypic variation in sockeye salmon. Mol Ecol. 2017;26:554–70.PubMedGoogle Scholar
  223. Lawson DJ, Hellenthal G, Myers S, Falush D. Inference of population structure using dense haplotype data. PLoS Genet. 2012;8:e1002453.PubMedPubMedCentralGoogle Scholar
  224. Le Luyer J, Laporte M, Beacham TD, et al. Parallel epigenetic modifications induced by hatchery rearing in a Pacific salmon. Proc Natl Acad Sci. 2017;114:12964–9.PubMedGoogle Scholar
  225. Lee MK, Hong Y, Kim S-Y, Kim WJ, London SJ. Epigenome-wide association study of chronic obstructive pulmonary disease and lung function in Koreans. Epigenomics. 2017;9:971–84.PubMedPubMedCentralGoogle Scholar
  226. Lee HJ, Georgiadou A, Otto TD, et al. Transcriptomic studies of malaria: a paradigm for investigation of systemic host-pathogen interactions. Microbiol Mol Biol Rev. 2018;82:e00071–17.PubMedPubMedCentralGoogle Scholar
  227. Leite DCA, Salles JF, Calderon EN, et al. Coral bacterial-core abundance and network complexity as proxies for anthropogenic pollution. Front Microbiol. 2018;9:833.PubMedPubMedCentralGoogle Scholar
  228. Leitwein M, Gagnaire P-A, Desmarais E, Berrebi P, Guinand B. Genomic consequences of a recent three-way admixture in supplemented wild brown trout populations revealed by local ancestry tracts. Mol Ecol. 2018;27:3466–83.PubMedGoogle Scholar
  229. Lewontin RC, Krakauer J. Distribution of gene frequency as a test of the theory of the selective neutrality of polymorphisms. Genetics. 1973;74:175–95.PubMedPubMedCentralGoogle Scholar
  230. Li H, Durbin R. Inference of human population history from individual whole-genome sequences. Nature. 2011;475:493–6.PubMedPubMedCentralGoogle Scholar
  231. Lind MI, Spagopoulou F. Evolutionary consequences of epigenetic inheritance. Heredity. 2018;121:205–9.PubMedGoogle Scholar
  232. Lorenzo FR, Huff C, Myllymäki M, et al. A genetic mechanism for Tibetan high-altitude adaptation. Nat Genet. 2014;46:951–6.PubMedPubMedCentralGoogle Scholar
  233. Lotterhos KE, Whitlock MC. Evaluation of demographic history and neutral parameterization on the performance of FST outlier tests. Mol Ecol. 2014;23(9):2178–92.PubMedPubMedCentralGoogle Scholar
  234. Lowry DB, Hoban S, Kelley JL, et al. Breaking RAD: an evaluation of the utility of restriction site-associated DNA sequencing for genome scans of adaptation. Mol Ecol Resour. 2017;17:142–52.PubMedGoogle Scholar
  235. Luikart G, England PR, Tallmon D, Jordan S, Taberlet P. The power and promise of population genomics: from genotyping to genome typing. Nat Rev Genet. 2003;4:981–94.Google Scholar
  236. Luikart G, Ryman N, Tallmon DA, Schwartz MK, Allendorf FW. Estimation of census and effective population sizes: the increasing usefulness of DNA-based approaches. Conserv Genet. 2010;11:355–73.Google Scholar
  237. Ma L, Sun X, Kong X, et al. Physiological, biochemical and proteomics analysis reveals the adaptation strategies of the alpine plant Potentilla saundersiana at altitude gradient of the Northwestern Tibetan Plateau. J Proteomics. 2015;112:63–82.PubMedGoogle Scholar
  238. Malécot G. The mathematics of heredity. San Francisco: W.H. Freeman; 1970.Google Scholar
  239. Manthey JD, Campillo LC, Burns KJ, Moyle RG. Comparison of target-capture and restriction-site associated DNA sequencing for phylogenomics: a test in cardinalid tanagers (Aves, Genus: Piranga). Syst Biol. 2016;65:640–50.PubMedPubMedCentralGoogle Scholar
  240. Marciniak S, Poinar H. Ancient pathogens through human history: a paleogenomic perspective. In: Lindqvist C, Rajora OP, editors. Paleogenomics. Cham: Springer International Publishing AG; 2018. Scholar
  241. Marques DA, Lucek K, Meier JI, et al. Genomics of rapid incipient speciation in sympatric threespine stickleback. PLoS Genet. 2016;12:e1005887.PubMedPubMedCentralGoogle Scholar
  242. Marques DA, Jones FC, Di Palma F, Kingsley DM, Reimchen TE. Experimental evidence for rapid genomic adaptation to a new niche in an adaptive radiation. Nat Ecol Evol. 2018;2:1128–38.PubMedGoogle Scholar
  243. Marsden CD, Lee Y, Kreppel K, et al. Diversity, differentiation, and linkage disequilibrium: prospects for association mapping in the malaria vector Anopheles arabiensis. G3. 2014;4:121–31.PubMedGoogle Scholar
  244. Martin EM, Fry RC. Environmental influences on the epigenome: exposure-associated DNA methylation in human populations. Annu Rev Public Health. 2018;39:309–33.PubMedGoogle Scholar
  245. Martin SH, Dasmahapatra KK, Nadeau NJ, et al. Genome-wide evidence for speciation with gene flow in Heliconius butterflies. Genome Res. 2013;23:1817–28.PubMedPubMedCentralGoogle Scholar
  246. Matthews B, Best RJ, Feulner PGD, Narwani A, Limberger R. Evolution as an ecosystem process: insights from genomics. Genome. 2018;61:298–309.PubMedGoogle Scholar
  247. Maynard Smith J, Haigh J. The hitch-hiking effect of a favorable gene. Genet Res. 1974;23:23–35.Google Scholar
  248. McCartney-Melstad E, Mount GG, Shaffer HB. Exon capture optimization in amphibians with large genomes. Mol Ecol Resour. 2016;16:1084–94.PubMedGoogle Scholar
  249. McCoy RC, Akey JM. Selection plays the hand it was dealt: evidence that human adaptation commonly targets standing genetic variation. Genome Biol. 2017;18:139.PubMedPubMedCentralGoogle Scholar
  250. McKain MR, Johnson MG, Uribe-Convers S, Eaton D, Yang Y. Practical considerations for plant phylogenomics. Appl Plant Sci. 2018;6:e1038.PubMedPubMedCentralGoogle Scholar
  251. Mckinney GJ, Seeb LW, Larson WA, et al. An integrated linkage map reveals candidate genes underlying adaptive variation in Chinook salmon (Oncorhynchus tshawytscha). Mol Ecol Resour. 2016;16:769–83.PubMedGoogle Scholar
  252. McKinney GJ, Larson WA, Seeb LW, Seeb JE. RADseq provides unprecedented insights into molecular ecology and evolutionary genetics: comment on Breaking RAD by Lowry et al. (2016). Mol Ecol Resour. 2017a;17:356–61.PubMedGoogle Scholar
  253. McKinney GJ, Waples RK, Seeb LW, Seeb JE. Paralogs are revealed by proportion of heterozygotes and deviations in read ratios in genotyping-by-sequencing data from natural populations. Mol Ecol Resour. 2017b;17:656–69.PubMedGoogle Scholar
  254. Mckown AD, Klápště J, Guy RD, et al. Genome-wide association implicates numerous genes underlying ecological trait variation in natural populations of Populus trichocarpa. New Phytol. 2014;203:535–53.PubMedGoogle Scholar
  255. McMahon BJ, Teeling EC, Höglund J. How and why should we implement genomics into conservation? Evol Appl. 2014;7:999–1007.PubMedPubMedCentralGoogle Scholar
  256. Meeks KAC, Henneman P, Venema A, et al. An epigenome-wide association study in whole blood of measures of adiposity among Ghanaians: the RODAM study. Clin Epigenetics. 2017;9:103.PubMedPubMedCentralGoogle Scholar
  257. Meyer M, Kircher M, Gansauge MT, et al. A high-coverage genome sequence from an archaic Denisovan individual. Science. 2012;338:222–6.PubMedPubMedCentralGoogle Scholar
  258. Miao B, Wang Z, Li Y. Genomic analysis reveals hypoxia adaptation in the tibetan mastiff by introgression of the gray wolf from the Tibetan plateau. Mol Biol Evol. 2017;34:734–43.PubMedGoogle Scholar
  259. Miles A, Harding NJ, Bottà G, et al. Genetic diversity of the African malaria vector anopheles gambiae. Nature. 2017;552:96–100.Google Scholar
  260. Miller JM, Malenfant RM, David P, et al. Estimating genome-wide heterozygosity: effects of demographic history and marker type. Heredity. 2014;112:240–7.PubMedGoogle Scholar
  261. Moler ERV, Abakir A, Eleftheriou M, Johnson JS, Krutovsky KV, Lewis LC, Ruzov A, Whipple AV, Rajora OP. Population epigenomics. In: Om PR, editor. Population genomics: concepts, approaches and applications. Cham: Springer International Publishing AG; 2018.Google Scholar
  262. Moran MA. Metatranscriptomics: eavesdropping on complex microbial communities. Microbe Mag. 2009;4:329–35.Google Scholar
  263. Muhlfeld CC, Kalinowski ST, McMahon TE, et al. Hybridization rapidly reduces fitness of a native trout in the wild. Biol Lett. 2009;5:328–31.PubMedPubMedCentralGoogle Scholar
  264. Nadeau NJ, Kawakami T. Population genomics of speciation and admixture. In: Om PR, editor. Population genomics: concepts, approaches and applications. Cham: Springer International Publishing AG; 2018. Scholar
  265. Nadeau NJ, Ruiz M, Salazar P, et al. Population genomics of parallel hybrid zones in the mimetic butterflies, H. melpomene and H. erato. Genome Res. 2014;24:1316–33.PubMedPubMedCentralGoogle Scholar
  266. Nakatochi M, Ichihara S, Yamamoto K, et al. Epigenome-wide association of myocardial infarction with DNA methylation sites at loci related to cardiovascular disease. Clin Epigenetics. 2017;9:54.PubMedPubMedCentralGoogle Scholar
  267. Narum SR, Buerkle CA, Davey JW, Miller MR, Hohenlohe PA. Genotyping-by-sequencing in ecological and conservation genomics. Mol Ecol. 2013;22:2841–7.PubMedPubMedCentralGoogle Scholar
  268. Narum SR, Di Genova A, Micheletti SJ, Maass A. Genomic variation underlying complex life-history traits revealed by genome sequencing in Chinook salmon. Proc Roy Soc B Biol Sci. 2018;285:20180935.Google Scholar
  269. Nash DR, Als TD, Maile R, Jones GR, Boomsma JJ. A mosaic of chemical coevolution in a large blue butterfly. Science. 2008;319:88–90.PubMedGoogle Scholar
  270. Nazareno AG, Bemmels JB, Dick CW, Lohmann LG. Minimum sample sizes for population genomics: an empirical study from an Amazonian plant species. Mol Ecol Resour. 2017;17:1136–47.PubMedGoogle Scholar
  271. Nedelkov D. Population proteomics: investigation of protein diversity in human populations. Proteomics. 2008;8:779–86.PubMedGoogle Scholar
  272. Nedelkov D, Kiernan UA, Niederkofler EE, Tubbs KA, Nelson RW. Investigating diversity in human plasma proteins. Proc Natl Acad Sci. 2005;102:10852–7.PubMedGoogle Scholar
  273. Nedelkov D, U A K, Niederkofler EE, Tubbs KA, Nelson RW. Population proteomics: the concept, attributes, and potential for cancer biomarker research. Mol Cell Proteomics. 2006;5:1811–8.PubMedGoogle Scholar
  274. Niederhuth CE, Bewick AJ, Ji L, et al. Widespread natural variation of DNA methylation within angiosperms. Genome Biol. 2016;17:174.Google Scholar
  275. Nielsen R, Williamson S, Kim Y, et al. Genomic scans for selective sweeps using SNP data. Genome Res. 2005;15:1566–75.PubMedPubMedCentralGoogle Scholar
  276. Nilsson E, et al. Environmental toxicant induced epigenetic transgenerational inheritance of ovarian pathology and granulosa cell epigenome and transcriptome alterations: ancestral origins of polycystic ovarian syndrome and primary ovarian insufiency. Epigenetics. 2018;13:875–95.PubMedPubMedCentralGoogle Scholar
  277. Noble TJ, Tao Y, Mace ES, et al. Characterization of linkage disequilibrium and population structure in a mungbean diversity panel. Front Plant Sci. 2018;8:2102.PubMedPubMedCentralGoogle Scholar
  278. Norris LC, Main BJ, Lee Y, et al. Adaptive introgression in an African malaria mosquito coincident with the increased usage of insecticide-treated bed nets. Proc Natl Acad Sci. 2015;112:815–20.PubMedGoogle Scholar
  279. Nosil P, Egan SP, Funk DJ. Heterogeneous genomic differentiation between walking-stick ecotypes: “isolation by adaptation” and multiple roles for divergent selection. Evolution. 2008;62:316–36.PubMedGoogle Scholar
  280. Nunziata SO, Weisrock DW. Estimation of contemporary effective population size and population declines using RAD sequence data. Heredity. 2018;120:196–207.PubMedGoogle Scholar
  281. Nystedt B, Street NR, Wetterbom A, et al. The Norway spruce genome sequence and conifer genome evolution. Nature. 2013;497:579–84.PubMedGoogle Scholar
  282. O’Quin KE, Yoshizawa M, Doshi P, Jeffery WR. Quantitative genetic analysis of retinal degeneration in the blind cavefish Astyanax mexicanus. PLoS One. 2013;8:e57281.PubMedPubMedCentralGoogle Scholar
  283. Oomen RA, Hutchings JA. Transcriptomic responses to environmental change in fishes: insights from RNA sequencing. FACETS. 2017;2:610–41.Google Scholar
  284. Orlando L. An ancient DNA perspective on horse evolution. In: Lindqvist C, Om PR, editors. Paleogenomics. Cham: Springer International Publishing AG; 2018. Scholar
  285. Orlando L, Ginolhac A, Zhang G, et al. Recalibrating equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature. 2013;499:74–8.PubMedGoogle Scholar
  286. Ozerov MY, Gross R, Bruneaux M, et al. Genomewide introgressive hybridization patterns in wild Atlantic salmon influenced by inadvertent gene flow from hatchery releases. Mol Ecol. 2016;25:1275–93.PubMedGoogle Scholar
  287. Ozsolak F, Milos PM. RNA sequencing: advances, challenges and opportunities. Nat Rev Genet. 2011;12:87–98.PubMedPubMedCentralGoogle Scholar
  288. Palkopoulou E, Mallick S, Skoglund P, et al. Complete genomes reveal signatures of demographic and genetic declines in the woolly mammoth. Curr Biol. 2015;25:1395–400.PubMedPubMedCentralGoogle Scholar
  289. Paradis E, Gosselin T, Goudet J, Jombart T, Schliep K. Linking genomics and population genetics with R. Mol Ecol Resour. 2017;17:54–66.PubMedGoogle Scholar
  290. Pardo-Diaz C, Salazar C, Baxter SW, et al. Adaptive introgression across species boundaries in Heliconius butterflies. PLoS Genet. 2012;8:e1002752.PubMedPubMedCentralGoogle Scholar
  291. Parducci L, Nota K, Wood J. Reconstructing past vegetation communities using ancient DNA from lake sediments. In: Lindqvist C, Om PR, editors. Paleogenomics. Cham: Springer International Publishing AG; 2018. Scholar
  292. Paris JR, Stevens JR, Catchen JM. Lost in parameter space: a road map for stacks. Meth Ecol Evol. 2017;8:1360–73.Google Scholar
  293. Payseur BA, Rieseberg LH. A genomic perspective on hybridization and speciation. Mol Ecol. 2016;25:2337–60.PubMedPubMedCentralGoogle Scholar
  294. Peek RA, O’Rourke SM, Miller MR. Flow regulation associated with decreased genetic health of a river-breeding frog species. BioRxiv. 2018;316604.Google Scholar
  295. Pemberton TJ, Absher D, Feldman MW, et al. Genomic patterns of homozygosity in worldwide human populations. Am J Hum Genet. 2012;91:275–92.PubMedPubMedCentralGoogle Scholar
  296. Pemberton JM, Ellis PE, Pilkington JG, Bérénos C. Inbreeding depression by environment interactions in a free-living mammal population. Heredity. 2017;118:64–77.PubMedGoogle Scholar
  297. Pennings PS, Hermisson J. Soft sweeps II – molecular population genetics of adaptation from recurrent mutation or migration. Mol Biol Evol. 2006;23:1076–84.PubMedGoogle Scholar
  298. Pérez O’Brien AM, Utsunomiya YT, Mészáros G, et al. Assessing signatures of selection through variation in linkage disequilibrium between taurine and indicine cattle. Genet Sel Evol. 2014;46:19.PubMedPubMedCentralGoogle Scholar
  299. Perry GH, Marioni JC, Melsted P, Gilad Y. Genomic-scale capture and sequencing of endogenous DNA from feces. Mol Ecol. 2010;19:5332–44.PubMedPubMedCentralGoogle Scholar
  300. Petkova D, Novembre J, Stephens M. Visualizing spatial population structure with estimated effective migration surfaces. Nat Genet. 2016;48:94–100.PubMedGoogle Scholar
  301. Pickrell JK, Pritchard JK. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 2012;8:e1002967.PubMedPubMedCentralGoogle Scholar
  302. Pino Del Carpio D, Lozano R, Wolfe MD, Jannink J-L. Genome-wide associationstudies and heritability estimation in the functional genomics era. In: Rajora OP, editor. Population genomics: concepts, approaches and applications. Cham: Springer International Publishing AG; 2018. Scholar
  303. Poelstra JW, Vijay N, Bossu CM, et al. The genomic landscape underlying phenotypic integrity in the face of gene flow in crows. Science. 2014;344:1410–4.PubMedGoogle Scholar
  304. Pogorelcnik R, Vaury C, Pouchin P, Jensen S, Brasset E. SRNAPipe: a Galaxy-based pipeline for bioinformatic in-depth exploration of small RNAseq data. Mob DNA. 2018;9:25.PubMedPubMedCentralGoogle Scholar
  305. Portik DM, Smith LL, Bi K. An evaluation of transcriptome-based exon capture for frog phylogenomics across multiple scales of divergence (Class: Amphibia, Order: Anura). Mol Ecol Resour. 2016;16:1069–83.PubMedGoogle Scholar
  306. Prince DJ, O’Rourke SM, Thompson TQ, et al. The evolutionary basis of premature migration in Pacific salmon highlights the utility of genomics for informing conservation. Sci Adv. 2017;3:e1603198.PubMedPubMedCentralGoogle Scholar
  307. Prüfer K, Racimo F, Patterson N, et al. The complete genome sequence of a Neanderthal from the Altai Mountains. Nature. 2014;505:43–9.PubMedGoogle Scholar
  308. Pruisscher P, Nylin S, Gotthard K, Wheat CW. Genetic variation underlying local adaptation of diapause induction along a cline in a butterfly. Mol Ecol. 2018. In press.Google Scholar
  309. Pryce JE, Haile-Mariam M, Goddard ME, Hayes BJ. Identification of genomic regions associated with inbreeding depression in Holstein and Jersey dairy cattle. Genet Sel Evol. 2014;46:71.PubMedPubMedCentralGoogle Scholar
  310. Purcell S, Neale B, Todd-Brown K, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75.PubMedPubMedCentralGoogle Scholar
  311. Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65.PubMedPubMedCentralGoogle Scholar
  312. Racimo F, Sankararaman S, Nielsen R, Huerta-Sánchez E. Evidence for archaic adaptive introgression in humans. Nat Rev Genet. 2015;16:359–71.PubMedPubMedCentralGoogle Scholar
  313. Rajora OP, Eckert AJ, Zinck JWR. Single-locus versus multilocus patterns of local adaptation to climate in eastern white pine (Pinus strobus, Pinaceae). PLoS One. 2016;11:e0158691.PubMedPubMedCentralGoogle Scholar
  314. Rasmussen M, Li Y, Lindgreen S, et al. Ancient human genome sequence of an extinct Palaeo-Eskimo. Nature. 2010;463:757–62.PubMedPubMedCentralGoogle Scholar
  315. Rastas P, Calboli FCF, Guo B, Shikano T, Merilä J. Construction of ultradense linkage maps with Lep-MAP2: stickleback F2 recombinant crosses as an example. Genome Biol Evol. 2016;8:78–93.Google Scholar
  316. Razgour O, Taggart JB, Manel S, et al. An integrated framework to identify wildlife populations under threat from climate change. Mol Ecol Resour. 2018;18:18–31.PubMedGoogle Scholar
  317. Rees BB, Andacht T, Skripnikova E, Crawford DL. Population proteomics: quantitative variation within and among populations in cardiac protein expression. Mol Biol Evol. 2011;28:1271–9.PubMedGoogle Scholar
  318. Rellstab C, Gugerli F, Eckert AJ, Hancock AM, Holderegger R. A practical guide to environmental association analysis in landscape genomics. Mol Ecol. 2015;24:4348–70.PubMedGoogle Scholar
  319. Renaut S, Grassa CJ, Yeaman S, et al. Genomic islands of divergence are not affected by geography of speciation in sunflowers. Nat Commun. 2013;4:1827.PubMedGoogle Scholar
  320. Resendez SD, Bradley JR, Xu D, Gokcumen O. Structural variants in ancient genomes. In: Lindqvist C, Om PR, editors. Paleogenomics. Cham: Springer International Publishing AG; 2018. Scholar
  321. Richards CL, Alonso C, Becker C, et al. Ecological plant epigenetics: evidence from model and non-model species, and the way forward. Ecol Lett. 2017;20:1576–90.PubMedGoogle Scholar
  322. Rieseberg L. Adaptive introgression: the seeds of resistance. Curr Biol. 2011;21:R581–3.PubMedGoogle Scholar
  323. Rochus CM, Tortereau F, Plisson-Petit F, et al. Revealing the selection history of adaptive loci using genome-wide scans for selection: an example from domestic sheep. BMC Genomics. 2018;19:71.PubMedPubMedCentralGoogle Scholar
  324. Rodríguez-Ezpeleta N, Bradbury IR, Mendibil I, et al. Population structure of Atlantic mackerel inferred from RAD-seq-derived SNP markers: effects of sequence clustering parameters and hierarchical SNP selection. Mol Ecol Resour. 2016;16:991–1001.PubMedGoogle Scholar
  325. Roffler GH, Amish SJ, Smith S, et al. SNP discovery in candidate adaptive genes using exon capture in a free-ranging alpine ungulate. Mol Ecol Resour. 2016;16:1147–64.PubMedGoogle Scholar
  326. Rogers RL, Slatkin M. Excess of genomic defects in a woolly mammoth on Wrangel island. PLoS Genet. 2017;13:e1006601.PubMedPubMedCentralGoogle Scholar
  327. Roitman S, Joseph Pollock F, Medina M. Coral microbiomes as bioindicators of reef health. In: Population genomics. Cham: Springer; 2018. p. 1–19.Google Scholar
  328. Rondeau EB, Minkley DR, Leong JS, et al. The genome and linkage map of the northern pike (Esox lucius): conserved synteny revealed between the salmonid sister group and the Neoteleostei. PLoS One. 2014;e102089:9.Google Scholar
  329. Rougeux C, Gagnaire P-A, Praebel K, Seehausen O, Bernatchez L. Convergent transcriptomic landscapes under polygenic selection accompany inter- continental parallel evolution within a Nearctic Coregonus (Salmonidae) sister-species complex. BioRxiv. 2018.
  330. Rubin C-J, et al. Whole-genome resequencing reveals loci under selection during chicken domestication. Nature. 2010;464:587.PubMedGoogle Scholar
  331. Rubin C-J, Megens H-J, Barrio AM, et al. Strong signatures of selection in the domestic pig genome. Proc Natl Acad Sci. 2012;109:19529–36.PubMedGoogle Scholar
  332. Sabeti PC, Reich DE, Higgins JM, et al. Detecting recent positive selection in the human genome from haplotype structure. Nature. 2002;419:832–7.PubMedGoogle Scholar
  333. Sabeti PC, Varilly P, Fry B, et al. Genome-wide detection and characterization of positive selection in human populations. Nature. 2007;449:913–8.PubMedPubMedCentralGoogle Scholar
  334. Saint-Pé K, Blanchet S, Tissot L, et al. Genetic admixture between captive-bred and wild individuals affects patterns of dispersal in a brown trout (Salmo trutta) population. Conserv Genet. 2018;5:1269–79.Google Scholar
  335. Salmona J, Heller R, Lascoux M, Shafer A. Inferring demographic history using genomic data. In: Rajora OP, editor. Population genomics: concepts, approaches and applications. Cham: Springer International Publishing AG; 2017. Scholar
  336. Salojärvi J. Computational tools for population genomics. In: Om PR, editor. Population genomics: concepts, approaches and applications. Cham: Springer International Publishing AG; 2018. Scholar
  337. Santure AW, Garant D. Wild GWAS-association mapping in natural populations. Mol Ecol Resour. 2018;18:729–38.PubMedGoogle Scholar
  338. Sboner A, Mu XJ, Greenbaum D, Auerbach RK, Gerstein MB. The real cost of sequencing: higher than you think! Genome Biol. 2011;12:125.PubMedPubMedCentralGoogle Scholar
  339. Schlötterer C. The evolution of molecular markers – just a matter of fashion? Nat Rev Genet. 2004;5:63–9.PubMedGoogle Scholar
  340. Schlötterer C, Tobler R, Kofler R, Nolte V. Sequencing pools of individuals-mining genome-wide polymorphism data without big funding. Nat Rev Genet. 2014;15:749–63.PubMedGoogle Scholar
  341. Schmidt TL, Filipovi I, Hoffmann AA, Rašić G. Fine-scale landscape genomics of Aedes aegypti reveals loss of Wolbachia transinfection, dispersal barrier and potential for occasional long distance movement. BioRxiv. 2017.
  342. Schmitz RJ, He Y, Valdés-López O, et al. Epigenome-wide inheritance of cytosine methylation variants in a recombinant inbred population. Genome Res. 2013a;23:1663–74.PubMedPubMedCentralGoogle Scholar
  343. Schmitz RJ, Schultz MD, Urich MA, et al. Patterns of population epigenomic diversity. Nature. 2013b;495:193–8.PubMedPubMedCentralGoogle Scholar
  344. Schrider DR, Kern AD. Soft sweeps are the dominant mode of adaptation in the human genome. Mol Biol Evol. 2017;34:1863–77.PubMedPubMedCentralGoogle Scholar
  345. Schweizer RM, VonHoldt BM, Harrigan R, et al. Genetic subdivision and candidate genes under selection in North American grey wolves. Mol Ecol. 2016;25:380–402.PubMedGoogle Scholar
  346. Sedlazeck FJ, Lee H, Darby CA, Schatz MC. Piercing the dark matter: bioinformatics of long-range sequencing and mapping. Nat Rev Genet. 2018;19:329–46.PubMedGoogle Scholar
  347. Shafer ABA, Wolf JBW, Alves PC, et al. Genomics and the challenging translation into conservation practice. Trends Ecol Evol. 2015;30:78–87.PubMedGoogle Scholar
  348. Shafer ABA, Peart CR, Tusso S, et al. Bioinformatic processing of RAD-seq data dramatically impacts downstream population genetic inference. Methods Ecol Evol. 2017;8:907–17. Scholar
  349. Shapiro B, Hofreiter M. A paleogenomic perspective on evolution and gene function: new insights from ancient DNA. Science. 2014;343Google Scholar
  350. Shimada-Sugimoto M, Otowa T, Miyagawa T, et al. Epigenome-wide association study of DNA methylation in panic disorder. Clin Epigenetics. 2017;9:6.PubMedPubMedCentralGoogle Scholar
  351. Shin D, Kim S-H, Park J, Lee H-K, Song K-D. Extent of linkage disequilibrium and effective population size of the Landrace population in Korea. Asian Australas J Anim Sci. 2018;31:1078–87.PubMedPubMedCentralGoogle Scholar
  352. Simons YB, Bullaughey K, Hudson RR, Sella G. A population genetic interpretation of GWAS findings for human quantitative traits. PLoS Biol. 2018;16:e2002985.PubMedPubMedCentralGoogle Scholar
  353. Skoglund P, Malmström H, Raghavan M, et al. Origins and genetic legacy of Neolithic farmers and hunter-gatherers in Europe. Science. 2012;336:466–9.PubMedGoogle Scholar
  354. Slatkin M. Linkage disequilibrium – understanding the evolutionary past and mapping the medical future. Nat Rev Genet. 2008;9:477–85.PubMedPubMedCentralGoogle Scholar
  355. Smith MW, O’Brien SJ. Mapping by admixture linkage disequilibrium: advances, limitations and guidelines. Nat Rev Genet. 2005;6:623–32.PubMedGoogle Scholar
  356. Sollars ESA, Buggs RJA. Genome-wide epigenetic variation among ash trees differing in susceptibility to a fungal disease. BMC Genomics. 2018;19:502.PubMedPubMedCentralGoogle Scholar
  357. Song Y, Endepols S, Klemann N, et al. Adaptive introgression of anticoagulant rodent poison resistance by hybridization between old world mice. Curr Biol. 2011;21:1296–301.PubMedPubMedCentralGoogle Scholar
  358. Sork VL. Gene flow and natural selection shape spatial patterns of genes in tree populations: implications for evolutionary processes and applications. Evol Appl. 2016;9:291–310.PubMedGoogle Scholar
  359. Sovic MG, Carstens BC, Gibbs HL. Genetic diversity in migratory bats: results from RADseq data for three tree bat species at an Ohio windfarm. PeerJ. 2016;4:e1647.PubMedPubMedCentralGoogle Scholar
  360. Speed D, Balding DJ. Relatedness in the post-genomic era: is it still useful? Nat Rev Genet. 2015;16:33–44.PubMedGoogle Scholar
  361. Srivathsan A, Ang A, Vogler AP, Meier R. Fecal metagenomics for the simultaneous assessment of diet, parasites, and population genetics of an understudied primate. Front Zool. 2016;13:17.PubMedPubMedCentralGoogle Scholar
  362. Stam P. The distribution of the fraction of the genome identical by descent in finite random mating populations. Genet Res. 1980;35:131–55.Google Scholar
  363. Stat M, Huggett MJ, Bernasconi R, et al. Ecosystem biomonitoring with eDNA: metabarcoding across the tree of life in a tropical marine environment. Sci Rep. 2017;7:12240.PubMedPubMedCentralGoogle Scholar
  364. Stetter MG, Thornton K, Ross-Ibarra J. Genetic architecture and selective sweeps after polygenic adaptation to distant trait optima. BioRxiv. 2018:313247.Google Scholar
  365. Stölting KN, Paris M, Meier C, et al. Genome-wide patterns of differentiation and spatially varying selection between postglacial recolonization lineages of Populus alba (Salicaceae), a widespread forest tree. New Phytol. 2015;207:723–34.PubMedGoogle Scholar
  366. Storz JF, Beaumont MA, Alberts SC. Genetic evidence for long-term population decline in a savannah-dwelling primate: inferences from a hierarchical Bayesian model. Mol Biol Evol. 2002;19:1981–90.PubMedGoogle Scholar
  367. Sugden LA, Atkinson EG, Fischer AP, et al. Localization of adaptive variants in human genomes using averaged one-dependence estimation. Nat Commun. 2018;9:703.PubMedPubMedCentralGoogle Scholar
  368. Suhre K, Arnold M, Bhagwat AM, et al. Connecting genetic risk to disease end points through the human blood plasma proteome. Nat Commun. 2017;8:14357.PubMedPubMedCentralGoogle Scholar
  369. Sunnucks P. Efficient genetic markers for population biology. Trends Ecol Evol. 2000;15:199–203.PubMedGoogle Scholar
  370. Suren H, Hodgins KA, Yeaman S, et al. Exome capture from the spruce and pine giga-genomes. Mol Ecol Resour. 2016;16:1136–46.PubMedGoogle Scholar
  371. Syring JV, Tennessen JA, Jennings TN, et al. Targeted capture sequencing in whitebark pine reveals range-wide demographic and adaptive patterns despite challenges of a large, repetitive genome. Front Plant Sci. 2016;7:484.PubMedPubMedCentralGoogle Scholar
  372. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989;123:585–95.PubMedPubMedCentralGoogle Scholar
  373. Tallmon DA, Luikart G, Waples RS. The alluring simplicity and complex reality of genetic rescue. Trends Ecol Evol. 2004;19:489–96.PubMedGoogle Scholar
  374. Taudt A, Colomé-Tatché M, Johannes F. Genetic sources of population epigenomic variation. Nat Rev Genet. 2016;17:319–32.PubMedGoogle Scholar
  375. Terhorst J, Kamm JA, Song YS. Robust and scalable inference of population history from hundreds of unphased whole genomes. Nat Genet. 2017;49:303–9.PubMedGoogle Scholar
  376. Teshima KM, Coop G, Przeworski M. How reliable are empirical genomic scans for selective sweeps? Genome Res. 2006;16:702–12.PubMedPubMedCentralGoogle Scholar
  377. Thalmann O, Perri AR. Paleogenomic inferences of dog domestication. In: Lindqvist C, Om PR, editors. Paleogenomics. Cham: Springer International Publishing AG; 2018. Scholar
  378. Thompson EA. Identity by descent: variation in meiosis, across genomes, and in populations. Genetics. 2013;194:301–26.PubMedPubMedCentralGoogle Scholar
  379. Thurber RV, Willner-Hall D, Rodriguez-Mueller B, et al. Metagenomic analysis of stressed coral holobionts. Environ Microbiol. 2009;11:2148–63.Google Scholar
  380. Tishkoff SA, Reed FA, Ranciaro A, et al. Convergent adaptation of human lactase persistence in Africa and Europe. Nat Genet. 2007;39:31–40.PubMedGoogle Scholar
  381. Tranchant-Dubreuil C, Ravel S, Monat C, et al. TOGGLe, a flexible framework for easily building complex workflows and performing robust large-scale NGS analyses. BioRxiv. 2018.
  382. Trapp J, Gouveia D, Almunia C, et al. Digging deeper into the pyriproxyfen-response of the amphipod gammarus fossarum with a next-generation ultra-high-field orbitrap analyser: new perspectives for environmental toxicoproteomics. Front Environ Sci. 2018;6:54.Google Scholar
  383. Turner TL, Hahn MW, Nuzhdin SV. Genomic islands of speciation in Anopheles gambiae. PLoS Biol. 2005;3:1572–8.Google Scholar
  384. Valdés A, Ehrlén J. Caterpillar seed predators mediate shifts in selection on flowering phenology in their host plant. Ecology. 2017;98:228–38.PubMedGoogle Scholar
  385. Valdisser PAMR, Pereira WJ, Almeida Filho JE, et al. In-depth genome characterization of a Brazilian common bean core collection using DArTseq high-density SNP genotyping. BMC Genomics. 2017;18:423.PubMedPubMedCentralGoogle Scholar
  386. Vallejo RL, Silva RMO, Evenhuis JP, et al. Accurate genomic predictions for BCWD resistance in rainbow trout are achieved using low-density SNP panels: evidence that long-range LD is a major contributing factor. J Anim Breed Genet. 2018;135:263–74.Google Scholar
  387. van Dijk EL, Jaszczyszyn Y, Naquin D, Thermes C. The third revolution in sequencing technology. Trends Genet. 2018;34:666–81.PubMedGoogle Scholar
  388. Vandersteen Tymchuk W, O’Reilly P, Bittman J, MacDonald D, Schulte P. Conservation genomics of Atlantic salmon: variation in gene expression between and within regions of the Bay of Fundy. Mol Ecol. 2010;19:1842–59.PubMedGoogle Scholar
  389. Vasemagi A, Primmer CR. Expressed sequence tag-linked microsatellites as a source of gene-associated polymorphisms for detecting signatures of divergent selection in Atlantic salmon (Salmo salar L.). Mol Biol Evol. 2005;22:1067–76.PubMedGoogle Scholar
  390. Vattathil S, Akey JM. Small amounts of archaic admixture provide big insights into human history. Cell. 2015;163:281–4.PubMedGoogle Scholar
  391. Venter J, et al. Environmental genome shotgun sequencing of the Sargasso Sea. Science. 2004;304:66–74.PubMedGoogle Scholar
  392. Voight BF, Kudaravalli S, Wen X, Pritchard JK. A map of recent positive selection in the human genome. PLoS Biol. 2006;4:e154.PubMedCentralGoogle Scholar
  393. VonHoldt BM, Pollinger JP, Earl DA, et al. A genome-wide perspective on the evolutionary history of enigmatic wolf-like canids. Genome Res. 2011;21:1294–305.PubMedPubMedCentralGoogle Scholar
  394. Waite DW, Dsouza M, Sekiguchi Y, Hugenholtz P, Taylor MW. Network-guided genomic and metagenomic analysis of the faecal microbiota of the critically endangered kakapo. Sci Rep. 2018;8:8228.Google Scholar
  395. Wallberg A, Han F, Wellhagen G, et al. A worldwide survey of genome sequence variation provides insight into the evolutionary history of the honeybee Apis mellifera. Nat Genet. 2014;46:1081–8.PubMedGoogle Scholar
  396. Wang J. Estimation of effective population sizes from data on genetic markers. Phil Trans Roy Soc B Biol Sci. 2005;360:1395–409.Google Scholar
  397. Wang Z, Gerstein M, Snyder M. RNA-seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10:57–63.PubMedPubMedCentralGoogle Scholar
  398. Wang J, Street NR, Scofield DG, Ingvarsson PK. Variation in linked selection and recombination drive genomic divergence during allopatric speciation of European and American aspens. Mol Biol Evol. 2016;33:1754–67.PubMedPubMedCentralGoogle Scholar
  399. Waples RS, Do C. Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: a largely untapped resource for applied conservation and evolution. Evol Appl. 2010;3:244–62.PubMedGoogle Scholar
  400. Waples RK, Larson WA, Waples RS. Estimating contemporary effective population size in non-model species using linkage disequilibrium across thousands of loci. Heredity. 2016;117:233–40.PubMedPubMedCentralGoogle Scholar
  401. Waterhouse MD, Erb LP, Beever EA, Russello MA. Adaptive population divergence and directional gene flow across steep elevational gradients in a climate-sensitive mammal. Mol Ecol. 2018;27:2512–28.PubMedGoogle Scholar
  402. Wecek K, Hartmann S, Paijmans JLA, et al. Complex admixture preceded and followed the extinction of wisent in the wild. Mol Biol Evol. 2017;34:598–612.PubMedGoogle Scholar
  403. Wellenreuther M, Bernatchez L. Eco-evolutionary genomics of chromosomal inversions. Trends Ecol Evol. 2018;33:427–40.PubMedGoogle Scholar
  404. Wellenreuther M, Hansson B. Detecting polygenic evolution: problems, pitfalls, and promises. Trends Genet. 2016;32:155–64.PubMedGoogle Scholar
  405. Wessinger CA, Kelly JK, Jiang P, Rausher MD, Hileman LC. SNP-skimming: a fast approach to map loci generating quantitative variation in natural populations. Mol Ecol Resour. 2018. Scholar
  406. Whiteley AR, Bhat A, Martins EP, et al. Population genomics of wild and laboratory zebrafish (Danio rerio). Mol Ecol. 2011;20:4259–76.PubMedPubMedCentralGoogle Scholar
  407. Whiteley AR, Fitzpatrick SW, Funk WC, Tallmon DA. Genetic rescue to the rescue. Trends Ecol Evol. 2015;30:42–9.PubMedGoogle Scholar
  408. Wilson G, Rannala B. Bayesian inference of recent migration rates using multilocus genotyoes. Genetics. 2003;163:1177–91.PubMedPubMedCentralGoogle Scholar
  409. Wolf JBW, Ellegren H. Making sense of genomic islands of differentiation in light of speciation. Nat Rev Genet. 2017;18:87–100.PubMedGoogle Scholar
  410. Wright S. Coefficients of inbreeding and relationship. Am Nat. 1922;56:330–8.Google Scholar
  411. Xu Z, Bolick SCE, Deroo LA, et al. Epigenome-wide association study of breast cancer using prospectively collected sister study samples. J Natl Cancer Inst. 2013;105:694–700.PubMedPubMedCentralGoogle Scholar
  412. Xue Y, Prado-Martinez J, Sudmant PH, et al. Mountain gorilla genomes reveal the impact of long-term population decline and inbreeding. Science. 2015;348:242–5.PubMedPubMedCentralGoogle Scholar
  413. Yeaman S, Whitlock MC. The genetic architecture of adaptation under migration-selection balance. Evolution. 2011;65:1897–911.PubMedGoogle Scholar
  414. Yeaman S, Hodgins KA, Lotterhos KE, et al. Convergent local adaptation to climate in distantly related conifers. Science. 2016;353:1431–3.PubMedGoogle Scholar
  415. Yi SV. Insights into epigenome evolution from animal and plant methylomes. Genome Biol Evol. 2017;9:3189–201.PubMedPubMedCentralGoogle Scholar
  416. Zhang W, Fan Z, Han E, et al. Hypoxia adaptations in the grey wolf (Canis lupus chanco) from Qinghai-Tibet plateau. PLoS Genet. 2014;10:e1004466.PubMedPubMedCentralGoogle Scholar
  417. Zhang W, Zhang H, Yang H, et al. Computational resources associating diseases with genotypes, phenotypes and exposures. Brief Bioinform. 2018:bby071.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Gordon Luikart
    • 1
    Email author
  • Marty Kardos
    • 1
  • Brian K. Hand
    • 1
  • Om P. Rajora
    • 2
  • Sally N. Aitken
    • 3
  • Paul A. Hohenlohe
    • 4
  1. 1.Flathead Lake Biological Station, Conservation Genomics Group, Division of Biological SciencesUniversity of MontanaPolsonUSA
  2. 2.Faculty of Forestry and Environmental ManagementUniversity of New BrunswickFrederictonCanada
  3. 3.Centre for Forest Conservation Genetics, Faculty of ForestryUniversity of British ColumbiaVancouverCanada
  4. 4.Department of Biological SciencesInstitute for Bioinformatics and Evolutionary Studies, University of IdahoMoscowUSA

Personalised recommendations