Advertisement

Paleogenomics pp 115-138 | Cite as

Ancient Pathogens Through Human History: A Paleogenomic Perspective

  • Stephanie Marciniak
  • Hendrik N. PoinarEmail author
Chapter
Part of the Population Genomics book series (POGE)

Abstract

Ancient bacterial and viral genomes provide a window into the tempo, chronology, and rate of evolutionary processes of pathogens that have accompanied humans throughout history, from catastrophic pandemics (e.g., Yersinia pestis and the Black Death) to diseases associated with “everyday” morbidity and mortality (e.g., tuberculosis, leprosy, hepatitis B virus). Excitingly, the scope of pathogens that can be explored using ancient DNA methods is expanding, largely due to advances in the recovery of these typically minute molecular fractions. Increasingly, ancient DNA is applied to the study of rapidly or slowly evolving pathogens across significant time transects (hundreds to thousands of years ago) enabling us to investigate ancient genomic diversity through a comparative lens that can potentially inform our understanding of how a pathogen has changed over time. In this chapter, we highlight the impact of changing molecular strategies in recovering and analyzing ancient pathogen genomes alongside the wealth of information within the historical record that both informs and challenges the framework used to explore pathogens and human disease in the past. The power of ancient DNA to detect the signatures of ancient pathogens is also tempered by recognized limitations in characterizing the relative “outcome” of complex human-pathogen interactions in diverse archaeological contexts.

Keywords

Ancient DNA Evolutionary history Human-pathogen interactions 

References

  1. Adler CJ, Haak W, Donlon D, Cooper A. Survival and recovery of DNA from ancient teeth and bones. J Archaeol Sci. 2011;38(5):956–64.  https://doi.org/10.1016/j.jas.2010.11.010.CrossRefGoogle Scholar
  2. Adler CJ, Dobney K, Weyrich LS, Kaidonis J, Walker AW, Haak W, et al. Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the Neolithic and Industrial revolutions. Nat Genet. 2013;45(4):450–5.  https://doi.org/10.1038/ng.2536.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Allentoft ME, Collins M, Harker D, Haile J, Oskam CL, Hale ML, et al. The half-life of DNA in bone: measuring decay kinetics in 158 dated fossils. Proc R Soc Lond B Biol Sci. 2012;279(1748):4724–33. http://rspb.royalsocietypublishing.org/content/early/2012/10/05/rspb.2012.1745?sid%3Dabb89d94-00f1-431b-8863-c62996e35478=.CrossRefGoogle Scholar
  4. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–10.  https://doi.org/10.1016/S0022-2836(05)80360-2.CrossRefPubMedGoogle Scholar
  5. Ávila-Arcos MC, Sandoval-Velasco M, Schroeder H, Carpenter ML, Malaspinas A-S, Wales N, et al. Comparative performance of two whole-genome capture methodologies on ancient DNA Illumina libraries. Methods Ecol Evol. 2015;6(6):725–34.  https://doi.org/10.1111/2041-210X.12353.CrossRefGoogle Scholar
  6. Barlow A, Gonzalez Fortes GM, Dalen L, Pinhasi R, Gasparyan B, Rabeder G, et al. Massive influence of DNA isolation and library preparation approaches on palaeogenomic sequencing data. bioRxiv. 2016;  https://doi.org/10.1101/075911. http://biorxiv.org/content/early/2016/09/19/075911.abstract.
  7. Barnes I, Duda A, Pybus OG, Thomas MG. Ancient urbanization predicts genetic resistance to tuberculosis. Evolution. 2011;65(3):842–8.  https://doi.org/10.1111/j.1558-5646.2010.01132.x.CrossRefPubMedGoogle Scholar
  8. Baron H, Hummel S, Herrmann B. Mycobacterium tuberculosis complex DNA in ancient human bones. J Archaeol Sci. 1996;23(5):667–71.  https://doi.org/10.1006/jasc.1996.0063.CrossRefGoogle Scholar
  9. Barreiro LB, Quintana-Murci L. From evolutionary genetics to human immunology: how selection shapes host defence genes. Nat Rev Genet. 2010;11(1):17–30.  https://doi.org/10.1038/nrg2698.CrossRefPubMedGoogle Scholar
  10. Benedictow OJ. The Black Death, 1346-1353: the complete history. Woodbridge: Boydell Press; 2004.Google Scholar
  11. Biagini P, Thèves C, Balaresque P, Géraut A, Cannet C, Keyser C, et al. Variola virus in a 300-year-old Siberian mummy. N Engl J Med. 2012;367(21):2057–9.  https://doi.org/10.1056/NEJMc1208124.CrossRefPubMedGoogle Scholar
  12. Bianucci R, Mattutino G, Lallo R, Charlier P, Jouin-Spriet H, Peluso A, et al. Immunological evidence of Plasmodium falciparum infection in an Egyptian child mummy from the Early Dynastic Period. J Archaeol Sci. 2008;35(7):1880–5.  https://doi.org/10.1016/j.jas.2007.11.019.CrossRefGoogle Scholar
  13. Bos KI, Schuenemann VJ, Golding GB, Burbano HA, Waglechner N, Coombes BK, et al. A draft genome of Yersinia pestis from victims of the Black Death. Nature. 2011;478(7370):506–10.  https://doi.org/10.1038/nature10549.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Bos KI, Jäger G, Schuenemann VJ, Vågene ÅJ, Spyrou MA, Herbig A, et al. Parallel detection of ancient pathogens via array-based DNA capture. Philos Trans R Soc Lond B Biol Sci. 2014;370(1660). http://rstb.royalsocietypublishing.org/content/370/1660/20130375.full.CrossRefGoogle Scholar
  15. Bos KI, Herbig A, Sahl J, Waglechner N, Fourment M, Forrest SA, et al. Eighteenth century Yersinia pestis genomes reveal the long-term persistence of an historical plague focus. elife. 2016;5:e12994.  https://doi.org/10.7554/eLife.12994.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Bouwman AS, Brown TA. The limits of biomolecular palaeopathology: ancient DNA cannot be used to study venereal syphilis. J Archaeol Sci. 2005;32(5):703–13.  https://doi.org/10.1016/j.jas.2004.11.014.CrossRefGoogle Scholar
  17. Briggs AW, Stenzel U, Johnson PLF, Green RE, Kelso J, Prüfer K, et al. Patterns of damage in genomic DNA sequences from a Neandertal. Proc Natl Acad Sci U S A. 2007;104(37):14616–21.  https://doi.org/10.1073/pnas.0704665104.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Brotherton P, Endicott P, Sanchez JJ, Beaumont M, Barnett R, Austin J, Cooper A. Novel high-resolution characterization of ancient DNA reveals C > U-type base modification events as the sole cause of post mortem miscoding lesions. Nucleic Acids Res. 2007;35(17):5717–28.  https://doi.org/10.1093/nar/gkm588.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Burbano HA, Hodges E, Green RE, Briggs AW, Krause J, Meyer M, et al. Targeted investigation of the Neandertal genome by array-based sequence capture. Science. 2010;328(5979):723–5. http://science.sciencemag.org/content/328/5979/723.CrossRefGoogle Scholar
  20. Campos PF, Craig OE, Turner-Walker G, Peacock E, Willerslev E, Gilbert MTP. DNA in ancient bone – where is it located and how should we extract it? Ann Anat. 2012;194(1):7–16.  https://doi.org/10.1016/j.aanat.2011.07.003.CrossRefPubMedGoogle Scholar
  21. Cappellini E, Collins MJ, Gilbert MTP. Unlocking ancient protein palimpsests. Science. 2014;343(6177):1320–2. http://science.sciencemag.org/content/343/6177/1320.CrossRefGoogle Scholar
  22. Carpenter ML, Buenrostro JD, Valdiosera C, Schroeder H, Allentoft ME, Sikora M, et al. Pulling out the 1%: whole-genome capture for the targeted enrichment of ancient DNA sequencing libraries. Am J Hum Genet. 2013;93(5):852–64.  https://doi.org/10.1016/j.ajhg.2013.10.002.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Casadevall A, Pirofski L-A. What is a pathogen? Ann Med. 2002;34(1):2–4.  https://doi.org/10.1080/078538902317338580.CrossRefPubMedGoogle Scholar
  24. Corthals A, Koller A, Martin DW, Rieger R, Chen EI, Bernaski M, et al. Detecting the immune system response of a 500 year-old Inca mummy. PLoS One. 2012;7(7):e41244.  https://doi.org/10.1371/journal.pone.0041244.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Cruz AR, Pillay A, Zuluaga AV, Ramirez LG, Duque JE, Aristizabal GE, et al. Secondary syphilis in Cali, Colombia: new concepts in disease pathogenesis. PLoS Negl Trop Dis. 2010;4(5):e690.  https://doi.org/10.1371/journal.pntd.0000690.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Cruz-Dávalos DI, Llamas B, Gaunitz C, Fages A, Gamba C, Soubrier J, et al. Experimental conditions improving in-solution target enrichment for ancient DNA. Mol Ecol Resour. 2016;17(3):508–22.  https://doi.org/10.1111/1755-0998.12595.CrossRefPubMedGoogle Scholar
  27. Cunha CB, Cunha BA. Great plagues of the past and remaining questions. In: Raoult D, Drancourt M, editors. Paleomicrobiology: past human infections. Berlin: Springer; 2008. p. 1–20.Google Scholar
  28. Cunnington AJ. Malaria and susceptibility to other infections. London School of Hygiene & Tropical Medicine; 2012.  https://doi.org/10.17037/PUBS.00901045.
  29. D’Amato A, Zilberstein G, Zilberstein S, Compagnoni BL, Righetti PG. Of mice and men: traces of life in the death registries of the 1630 plague in Milano. J Proteome. 2018;  https://doi.org/10.1016/j.jprot.2017.11.028.CrossRefGoogle Scholar
  30. Dabney J, Knapp M, Glocke I, Gansauge M-T, Weihmann A, Nickel B, et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc Natl Acad Sci U S A. 2013;110(39):15758–63.  https://doi.org/10.1073/pnas.1314445110.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Delsuc F, Gibb GC, Kuch M, Billet G, Hautier L, Southon J, et al. The phylogenetic affinities of the extinct glyptodonts. Curr Biol. 2016;26(4):R155–6.  https://doi.org/10.1016/j.cub.2016.01.039.CrossRefPubMedGoogle Scholar
  32. Devault AM, Golding GB, Waglechner N, Enk JM, Kuch M, Tien JH, et al. Second-pandemic strain of Vibrio cholerae from the Philadelphia cholera outbreak of 1849. N Engl J Med. 2014a;370(4):334–40.  https://doi.org/10.1056/NEJMoa1308663.CrossRefGoogle Scholar
  33. Devault AM, McLoughlin K, Jaing C, Gardner S, Porter TM, Enk JM, et al. Ancient pathogen DNA in archaeological samples detected with a Microbial Detection Array. Sci Rep. 2014b;4:4245.  https://doi.org/10.1038/srep04245.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Devault AM, Mortimer TD, Kitchen A, Kiesewetter H, Enk JM, Golding GB, et al. A molecular portrait of maternal sepsis from Byzantine Troy. elife. 2017;6:e20983.  https://doi.org/10.7554/eLife.20983.CrossRefPubMedPubMedCentralGoogle Scholar
  35. DeWitte SN, Stojanowski CM. The Osteological Paradox 20 years later: past perspectives, future directions. J Archaeol Res. 2015;23(4):397–450.  https://doi.org/10.1007/s10814-015-9084-1.CrossRefGoogle Scholar
  36. Drancourt M, Raoult D. Molecular insights into the history of plague. Microbes Infect. 2002;4(1):105–9.  https://doi.org/10.1016/S1286-4579(01)01515-5.CrossRefPubMedGoogle Scholar
  37. Drancourt M, Aboudharam G, Signoli M, Dutour O, Raoult D. Detection of 400-year-old Yersinia pestis DNA in human dental pulp: an approach to the diagnosis of ancient septicemia. Proc Natl Acad Sci. 1998;95(21):12637–40.  https://doi.org/10.1073/pnas.95.21.12637.CrossRefPubMedGoogle Scholar
  38. Dubreuil J, Rech A. Rapport sur le Choléra-Morbus Asiatique qui a Régné dans le midi de la France en 1835. Montpellier: Martel; 1836.Google Scholar
  39. Duggan AT, Perdomo MF, Piombino-Mascali D, Marciniak S, Poinar D, Emery MV, et al. 17th century Variola virus reveals the recent history of smallpox. Curr Biol. 2016;26(24):3407–12.  https://doi.org/10.1016/j.cub.2016.10.061.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Dutour O. Paleoparasitology and paleopathology. Synergies for reconstructing the past of human infectious diseases and their pathocenosis. Int J Paleopathol. 2013;3(3):145–9.  https://doi.org/10.1016/j.ijpp.2013.09.008.CrossRefPubMedGoogle Scholar
  41. Enk JM. Time, temperature, and tiling density when capturing ancient DNA. In: Plant & Animal Genome Conference XXIII. 2015.Google Scholar
  42. Enk JM, Devault AM, Kuch M, Murgha YE, Rouillard J-M, Poinar HN. Ancient whole genome enrichment using baits built from modern DNA. Mol Biol Evol. 2014;31(5):1292–4.  https://doi.org/10.1093/molbev/msu074.CrossRefGoogle Scholar
  43. Faerman M, Jankauskas R, Gorski A, Bercovier H, Greenblatt CL. Prevalence of human tuberculosis in a medieval population of Lithuania studied by ancient DNA analysis. Anc Biomol. 1997;1:205–14.Google Scholar
  44. Faure E. Malarial pathocoenosis: beneficial and deleterious interactions between malaria and other human diseases. Front Physiol. 2014;5:441.  https://doi.org/10.3389/fphys.2014.00441.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Fears JR. The plague under Marcus Aurelius and the decline and fall of the Roman Empire. Infect Dis Clin N Am. 2004;18(1):65–77.CrossRefGoogle Scholar
  46. Florens L, Washburn MP, Raine JD, Anthony RM, Grainger M, Haynes JD, et al. A proteomic view of the Plasmodium falciparum life cycle. Nature. 2002;419(6906):520–6.  https://doi.org/10.1038/nature01107.CrossRefPubMedGoogle Scholar
  47. Gansauge M-T, Meyer M. Single-stranded DNA library preparation for the sequencing of ancient or damaged DNA. Nat Protoc. 2013;8(4):737–48.  https://doi.org/10.1038/nprot.2013.038.CrossRefGoogle Scholar
  48. Gansauge M-T, Gerber T, Glocke I, Korlević P, Lippik L, Nagel S, et al. Single-stranded DNA library preparation from highly degraded DNA using T4 DNA ligase. Nucleic Acids Res. 2017;45(10):e79.  https://doi.org/10.1093/nar/gkx033.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Geigl E-M. On the circumstances surrounding the preservation and analysis of very old DNA. Archaeometry. 2002;44(3):337–42.  https://doi.org/10.1111/1475-4754.t01-1-00066.CrossRefGoogle Scholar
  50. Gelabert P, Olalde I, de-Dios T, Civit S, Lalueza-Fox C. Malaria was a weak selective force in ancient Europeans. Sci Rep. 2017;7(1):1377.  https://doi.org/10.1038/s41598-017-01534-5.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Gilbert MTP, Cuccui J, White W, Lynnerup N, Titball RW, Cooper A, Prentice MB. Absence of Yersinia pestis-specific DNA in human teeth from five European excavations of putative plague victims. Microbiology. 2004;150(2):341–54.  https://doi.org/10.1099/mic.0.26594-0.CrossRefPubMedGoogle Scholar
  52. Gnirke A, Melnikov A, Maguire J, Rogov P, LeProust EM, Brockman W, et al. Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat Biotechnol. 2009;27(2):182–9.  https://doi.org/10.1038/nbt.1523.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Gonzalez J-P, Guiserix M, Sauvage F, Guitton J-S, Vidal P, Bahi-Jaber N, et al. Pathocenosis: a holistic approach to disease ecology. EcoHealth. 2010;7(2):237–41.  https://doi.org/10.1007/s10393-010-0326-x.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Grmek MD. Préliminaires d’une étude historique des maladies. Annales. Histoire, Sciences Sociales. 1969;24:1437–83.CrossRefGoogle Scholar
  55. Haas CJ, Zink A, Pálfi G, Szeimies U, Nerlich AG. Detection of leprosy in ancient human skeletal remains by molecular identification of Mycobacterium leprae. Am J Clin Pathol. 2000;114(3):428–36.  https://doi.org/10.1093/ajcp/114.3.428.CrossRefPubMedGoogle Scholar
  56. Hagelberg E, Clegg JB. Isolation and characterization of DNA from archaeological bone. Proc R Soc Lond Ser B Biol Sci. 1991;244(1309)  https://doi.org/10.1098/rspb.1991.0049. http://rspb.royalsocietypublishing.org/content/244/1309/45.abstract.
  57. Harkins KM, Buikstra JE, Campbell T, Bos KI, Johnson ED, Krause J, Stone AC. Screening ancient tuberculosis with qPCR: challenges and opportunities. Philos Trans R Soc Lond B Biol Sci. 2015;370(1660)  https://doi.org/10.1098/rstb.2013.0622. http://rstb.royalsocietypublishing.org/content/370/1660/20130622.CrossRefGoogle Scholar
  58. Hendy J, Collins M, Teoh KY, Ashford DA, Thomas-Oates J, Donoghue HD, et al. The challenge of identifying tuberculosis proteins in archaeological tissues. J Archaeol Sci. 2016;66:146–53.  https://doi.org/10.1016/j.jas.2016.01.003.CrossRefGoogle Scholar
  59. Herbig A, Maixner F, Bos KI, Zink A, Krause J, Huson DH. MALT: fast alignment and analysis of metagenomic DNA sequence data applied to the Tyrolean Iceman. bioRxiv. 2016;  https://doi.org/10.1101/050559. http://biorxiv.org/content/early/2016/04/27/050559.abstract.
  60. Höss M, Pääbo S. DNA extraction from Pleistocene bones by a silica-based purification method. Nucleic Acids Res. 1993;21(16):3913–4. http://www.ncbi.nlm.nih.gov/pubmed/8396242.CrossRefGoogle Scholar
  61. Huson DH, Auch AF, Qi J, Schuster SC. MEGAN analysis of metagenomic data. Genome Res. 2007;17(3):377–86.  https://doi.org/10.1101/gr.5969107.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Jonsson H, Ginolhac A, Schubert M, Johnson PLF, Orlando L. mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics. 2013;29(13):1682–4.  https://doi.org/10.1093/bioinformatics/btt193.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Kay GL, Sergeant MJ, Giuffra V, Bandiera P, Milanese M, Bramanti B, et al. Recovery of a medieval Brucella melitensis genome using shotgun metagenomics. MBio. 2014;5(4):e01337–14.  https://doi.org/10.1128/mBio.01337-14.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Kistler L, Smith O, Ware R, Momber G, Bates R, Garwood P, et al. Thermal age, cytosine deamination and the veracity of 8,000 year old wheat DNA from sediments. bioRxiv. 2015;  https://doi.org/10.1101/032060. http://biorxiv.org/content/early/2015/11/18/032060.abstract.
  65. Kistler L, Ware R, Smith O, Collins M, Allaby RG. A new model for ancient DNA decay based on paleogenomic meta-analysis. Nucleic Acids Res. 2017;  https://doi.org/10.1093/nar/gkx361.CrossRefGoogle Scholar
  66. Knapp M, Hofreiter M. Next generation sequencing of ancient DNA: requirements, strategies and perspectives. Genes. 2010;  https://doi.org/10.3390/genes1020227.CrossRefGoogle Scholar
  67. Kolling G, Wu M, Guerrant RL. Enteric pathogens through life stages. Front Cell Infect Microbiol. 2012;2:114.  https://doi.org/10.3389/fcimb.2012.00114.CrossRefPubMedPubMedCentralGoogle Scholar
  68. Kolman CJ, Centurion-Lara A, Lukehart SA, Owsley DW, Tuross N. Identification of Treponema pallidum subspecies pallidum in a 200-year-old skeletal specimen. J Infect Dis. 1999;180(6):2060–3.  https://doi.org/10.1086/315151.CrossRefPubMedGoogle Scholar
  69. Krause-Kyora B, Susat J, Key FM, Kuhnert D, Bosse E, Immel A, et al. Neolithic and medieval virus genomes reveal complex evolution of hepatitis B. elife. 2018a;7:e36666.CrossRefGoogle Scholar
  70. Krause-Kyora B, Nutsua M, Boehme L, Pierini F, Pedersen DD, Kornell S-C, et al. Ancient DNA study reveals HLA susceptibility locus for leprosy in medieval Europeans. Nat Commun. 2018b;9:1569.CrossRefGoogle Scholar
  71. Kwiatkowski DP. How malaria has affected the human genome and what human genetics can teach us about malaria. Am J Hum Genet. 2005;77(2):171–92.  https://doi.org/10.1086/432519.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Lalremruata A, Ball M, Bianucci R, Welte B, Nerlich AG, Kun JFJ, Pusch CM. Molecular identification of falciparum malaria and human tuberculosis co-infections in mummies from the Fayum Depression (Lower Egypt). PLoS One. 2013;8(4):e60307.  https://doi.org/10.1371/journal.pone.0060307.CrossRefPubMedPubMedCentralGoogle Scholar
  73. Littman RJ, Littman ML. Galen and the Antonine Plague. Am J Philol. 1973;94(3):243–55.  https://doi.org/10.2307/293979.CrossRefPubMedGoogle Scholar
  74. Maixner F, Thomma A, Cipollini G, Widder S, Rattei T, Zink A. Metagenomic analysis reveals presence of Treponema denticola in a tissue biopsy of the Iceman. PLoS One. 2014;9(6):e99994.  https://doi.org/10.1371/journal.pone.0099994.CrossRefPubMedPubMedCentralGoogle Scholar
  75. Marciniak S, Prowse TL, Herring DA, Klunk J, Kuch M, Duggan AT, et al. Plasmodium falciparum malaria in 1st–2nd century CE southern Italy. Curr Biol. 2016;  https://doi.org/10.1016/j.cub.2016.10.016.CrossRefGoogle Scholar
  76. Mays S, Taylor GM, Legge AJ, Young DB, Turner-Walker G. Paleopathological and biomolecular study of tuberculosis in a medieval skeletal collection from England. Am J Phys Anthropol. 2001;114(4):298–311.  https://doi.org/10.1002/ajpa.1042.CrossRefPubMedGoogle Scholar
  77. Mays S, Fysh E, Taylor GM. Investigation of the link between visceral surface rib lesions and tuberculosis in a Medieval skeletal series from England using ancient DNA. Am J Phys Anthropol. 2002;119(1):27–36.  https://doi.org/10.1002/ajpa.10099.CrossRefPubMedGoogle Scholar
  78. Meyer M, Kircher M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb Protoc. 2010;2010(6):pdb.prot5448.  https://doi.org/10.1101/pdb.prot5448.CrossRefGoogle Scholar
  79. Millar CD, Huynen L, Subramanian S, Mohandesan E, Lambert DM. New developments in ancient genomics. Trends Ecol Evol. 2008;23(7):386–93.  https://doi.org/10.1016/j.tree.2008.04.002.CrossRefPubMedGoogle Scholar
  80. Miller RL, Ikram S, Armelagos GJ, Walker R, Harer WB, Shiff CJ, et al. Diagnosis of Plasmodium falciparum infections in mummies using the rapid manual ParaSight-F test. Trans R Soc Trop Med Hyg. 1994;88(1):31–2.  https://doi.org/10.1016/0035-9203(94)90484-7.CrossRefPubMedGoogle Scholar
  81. Milner GR, Boldsen JL. Life not death: epidemiology from skeletons. Int J Paleopathol. 2017;17:26–39.  https://doi.org/10.1016/j.ijpp.2017.03.007.CrossRefPubMedGoogle Scholar
  82. Minnikin DE, Besra GS, Lee OY-C, Spigelman M, Donoghue HD. The interplay of DNA and lipid biomarkers in the detection of tuberculosis and leprosy in mummies and other skeletal remains. In: Gill-Frerking H, Rosendahl W, Zink A, editors. Yearbook of Mummy Studies, vol. 1. Munich: Verlag Dr. Friedrich Pfeil; 2011. p. 109–14.Google Scholar
  83. Molak M, Ho SYW. Evaluating the impact of post-mortem damage in ancient DNA: a theoretical approach. J Mol Evol. 2011;73(3–4):244–55.  https://doi.org/10.1007/s00239-011-9474-z.CrossRefPubMedGoogle Scholar
  84. Montiel R, Garcia C, Canadas MP, Isidro A, Guijo JM, Malgosa A. DNA sequences of Mycobacterium leprae recovered from ancient bones. FEMS Microbiol Lett. 2003;226(2):413–4.  https://doi.org/10.1016/S0378-1097(03)00617-7.CrossRefPubMedGoogle Scholar
  85. Mueller A-K, Behrends J, Hagens K, Mahlo J, Schaible UE, Schneider BE. Natural transmission of Plasmodium berghei exacerbates chronic tuberculosis in an experimental co-infection model. PLoS One. 2012;7(10):e48110.  https://doi.org/10.1371/journal.pone.0048110.CrossRefPubMedPubMedCentralGoogle Scholar
  86. Mühlemann B, Margaryan A, Damgaard P, Allentoft ME, Vinner L, Hansen AJ, et al. Ancient human parvovirus B19 in Eurasia reveals its long-term association with humans. Proc Natl Acad Sci U S A. 2018a;  https://doi.org/10.1073/pnas.1804921115.CrossRefGoogle Scholar
  87. Mühlemann B, Jones TC, Damgaard P, Allentoft ME, Shevnina I, Logvin A, et al. Ancient hepatitis B viruses from the Bronze Age to the Medieval period. Nature. 2018b;577:418–23.CrossRefGoogle Scholar
  88. Mutolo MJ, Jenny LL, Buszek AR, Fenton TW, Foran DR. Osteological and molecular identification of brucellosis in ancient Butrint, Albania. Am J Phys Anthropol. 2012;147(2):254–63.  https://doi.org/10.1002/ajpa.21643.CrossRefPubMedGoogle Scholar
  89. Newfield TP, Labuhn I. Realizing consilience in studies of pre-instrumental climate and pre-laboratory disease. J Interdiscip Hist. 2017;48(2):211–40.CrossRefGoogle Scholar
  90. Orlando L, Gilbert MTP, Willerslev E. Reconstructing ancient genomes and epigenomes. Nat Rev Genet. 2015;16(7):395–408.  https://doi.org/10.1038/nrg3935.CrossRefGoogle Scholar
  91. Ortner DJ. Identification of pathological conditions in human skeletal remains. 2nd ed. San Diego: Academic; 2003.Google Scholar
  92. Patterson Ross Z, Klunk J, Fornaciari G, Giuffra V, Duchêne S, Duggan AT, et al. The paradox of HBV evolution as revealed from a 16th century mummy. PLoS Pathog. 2018;14(1):e1006750.  https://doi.org/10.1371/journal.ppat.1006750.CrossRefPubMedPubMedCentralGoogle Scholar
  93. Rabino Massa E, Cerutti N, Marin A, Savoia D. Malaria in Ancient Egypt: paleoimmunological investigation on predynastic mummified remains. Chungará (Arica). 2000;32(1):7–9.  https://doi.org/10.4067/S0717-73562000000100003.CrossRefGoogle Scholar
  94. Redman JE, Shaw MJ, Mallet AI, Santos AL, Roberts CA, Gernaey AM, Minnikin DE. Mycocerosic acid biomarkers for the diagnosis of tuberculosis in the Coimbra Skeletal Collection. Tuberculosis. 2009;89(4):267–77.  https://doi.org/10.1016/j.tube.2009.04.001.CrossRefPubMedGoogle Scholar
  95. Roberts CA, Manchester K. Archaeology of disease. Stroud: Sutton Publishing; 2005.Google Scholar
  96. Sallares R, Gomzi S. Biomolecular archaeology of malaria. Anc Biomol. 2001;3:195–213.Google Scholar
  97. Salo WL, Aufderheide AC, Buikstra J, Holcomb TA. Identification of Mycobacterium tuberculosis DNA in a pre-Columbian Peruvian mummy. Proc Natl Acad Sci. 1994;91(6):2091–4. http://www.pnas.org/content/91/6/2091.abstract.CrossRefGoogle Scholar
  98. Saunders SR, Herring DA, Boyce G. Can skeletal samples accurately represent the living populations they come from? The St. Thomas’ cemetery site, Belleville, Ontario. In: Grauer AL, editor. Bodies of evidence: reconstructing history through skeletal analysis. New York: Wiley-Liss; 1995. p. 68–89.Google Scholar
  99. Schuenemann V, Avanzi C, Krause-Kyora B, Seitz A, Herbig A, Inskip S, et al. Ancient genomes reveal a high diversity of Mycobacterium leprae in medieval Europe. PLoS Pathog. 2018a;14(5):e1006997.CrossRefGoogle Scholar
  100. Schuenemann V, Lankapalli AK, Barquera R, Nelson EA, Hernandez DI, Alonzo VA, et al. Historic Treponema pallidum genomes from Colonial Mexico retrieved from archaeological remains. PLoS Negl Trop Dis. 2018b;12(6):e0006447.CrossRefGoogle Scholar
  101. Segata N, Waldron L, Ballarini A, Narasimhan V, Jousson O, Huttenhower C. Metagenomic microbial community profiling using unique clade-specific marker genes. Nat Methods. 2012;9(8):811–4.  https://doi.org/10.1038/nmeth.2066.CrossRefPubMedPubMedCentralGoogle Scholar
  102. Singer M. Pathogen-pathogen interaction. Virulence. 2010;1(1):10–8.  https://doi.org/10.4161/viru.1.1.9933.CrossRefPubMedPubMedCentralGoogle Scholar
  103. Spyrou MA, Tukhbatova RI, Feldman M, Drath J, Kacki S, Beltrán de Heredia J, et al. Historical Y. pestis genomes reveal the European Black Death as the source of ancient and modern plague pandemics. Cell Host Microbe. 2016;19(6):874–81.  https://doi.org/10.1016/j.chom.2016.05.012.CrossRefGoogle Scholar
  104. Steinbock RT. Paleopathological diagnosis and interpretation: bone diseases in ancient human populations. Springfield: Charles C Thomas; 1976.Google Scholar
  105. Taylor GM, Tucker K, Butler R, Pike AWG, Lewis J, Roffey S, et al. Detection and strain typing of ancient Mycobacterium leprae from a medieval leprosy hospital. PLoS One. 2013;8(4):e62406.  https://doi.org/10.1371/journal.pone.0062406.CrossRefPubMedPubMedCentralGoogle Scholar
  106. Thierry D, Brisson-Noël A, Vincent-Lévy-Frébault V, Nguyen S, Guesdon JL, Gicquel B. Characterization of a Mycobacterium tuberculosis insertion sequence, IS6110, and its application in diagnosis. J Clin Microbiologyrobiol. 1990;28(12):2668–73. http://www.ncbi.nlm.nih.gov/pubmed/2177747.Google Scholar
  107. Tran T-N-N, Aboudharam G, Raoult D, Drancourt M. Beyond ancient microbial DNA: nonnucleotidic biomolecules for paleomicrobiology. BioTechniques. 2011;50(6):370–80.  https://doi.org/10.2144/000113689.CrossRefPubMedGoogle Scholar
  108. Vågene ÅJ, Herbig A, Campana MG, Robles García NM, Warinner C, Sabin S, et al. Salmonella enterica genomes from victims of a major sixteenth-century epidemic in Mexico. Nat Ecol Evol. 2018;  https://doi.org/10.1038/s41559-017-0446-6.CrossRefGoogle Scholar
  109. van Soolingen D, Hermans PW, de Haas PE, van Embden JD. Insertion element IS1081-associated restriction fragment length polymorphisms in Mycobacterium tuberculosis complex species: a reliable tool for recognizing Mycobacterium bovis BCG. J Clin Microbiol. 1992;30(7):1772–7. http://www.ncbi.nlm.nih.gov/pubmed/1352785.PubMedPubMedCentralGoogle Scholar
  110. von Hunnius TE, Yang D, Eng B, Waye JS, Saunders SR. Digging deeper into the limits of ancient DNA research on syphilis. J Archaeol Sci. 2007;34(12):2091–100.  https://doi.org/10.1016/j.jas.2007.02.007.CrossRefGoogle Scholar
  111. Wagner DM, Klunk J, Harbeck M, Devault A, Waglechner N, Sahl JW, et al. Yersinia pestis and the Plague of Justinian 541–543 AD: a genomic analysis. Lancet Infect Dis. 2014;14(4):319–26.  https://doi.org/10.1016/S1473-3099(13)70323-2.CrossRefGoogle Scholar
  112. Wales N, Carøe C, Sandoval-Velasco M, Gamba C, Barnett R, Samaniego JA, et al. New insights on single-stranded versus double-stranded DNA library preparation for ancient DNA. BioTechniques. 2015;59(6):368–71.  https://doi.org/10.2144/000114364.CrossRefPubMedGoogle Scholar
  113. Warinner C, Rodrigues JFM, Vyas R, Trachsel C, Shved N, Grossmann J, et al. Pathogens and host immunity in the ancient human oral cavity. Nat Genet. 2014;46(4):336–44.  https://doi.org/10.1038/ng.2906.CrossRefPubMedPubMedCentralGoogle Scholar
  114. Warinner C, Herbig A, Mann A, Fellows Yates JA, Weiß CL, Burbano HA, et al. A robust framework for microbial archaeology. Annu Rev Genomics Hum Genet. 2017;18(1):321–56.  https://doi.org/10.1146/annurev-genom-091416-035526.CrossRefPubMedPubMedCentralGoogle Scholar
  115. Whatmore AM. Ancient-pathogen genomics: coming of age? MBio. 2014;5(5):e01676–14.  https://doi.org/10.1128/mBio.01676-14.CrossRefPubMedPubMedCentralGoogle Scholar
  116. Wickham H. Ggplot 2: elegant graphics for data analysis. New York: Springer; 2016.CrossRefGoogle Scholar
  117. Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 2014;15(3):R46.  https://doi.org/10.1186/gb-2014-15-3-r46.CrossRefPubMedPubMedCentralGoogle Scholar
  118. Wood JW, Milner GR, Harpending HC, Weiss KM. The Osteological Paradox: problems of inferring prehistoric health from skeletal samples. Curr Anthropol. 1992;33(4):343–70.  https://doi.org/10.1086/204084.CrossRefGoogle Scholar
  119. Woods SA, Cole ST. A family of dispersed repeats in Mycobacterium leprae. Mol Microbiol. 1990;4(10):1745–51.  https://doi.org/10.1111/j.1365-2958.1990.tb00552.x.CrossRefPubMedGoogle Scholar
  120. Zhou Z, Lundstrøm I, Tran-Dien A, Duchêne S, Alikhan N-F, Sergeant MJ, et al. Millennia of genomic stability within the invasive Para C Lineage of Salmonella enterica. bioRxiv. 2017;  https://doi.org/10.1101/105759. http://www.biorxiv.org/content/early/2017/02/14/105759.
  121. Zink A, Haas CJ, Reischl U, Szeimies U, Nerlich AG. Molecular analysis of skeletal tuberculosis in an ancient Egyptian population. J Med Microbiol. 2001;50(4):355–66.  https://doi.org/10.1099/0022-1317-50-4-355.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.McMaster Ancient DNA Centre, Department of AnthropologyMcMaster UniversityHamiltonCanada
  2. 2.Department of AnthropologyPennsylvania State UniversityUniversity ParkUSA
  3. 3.Michael G. DeGroote Institute for Infectious Disease Research and the Department of BiochemistryMcMaster UniversityHamiltonCanada
  4. 4.Humans and the Microbiome ProgramCanadian Institute for Advanced ResearchTorontoCanada

Personalised recommendations