Advertisement

Paleogenomics pp 189-203 | Cite as

Archaeogenomics and Crop Adaptation

  • Robin G. AllabyEmail author
  • Oliver Smith
  • Logan Kistler
Chapter
Part of the Population Genomics book series (POGE)

Abstract

The genetic history of domestic plants is complex, protracted, and unique to often very specific factors including location, human intent, and the wider environment. In addition to well-addressed questions of domestication syndrome, and conscious versus unconscious selection, the issue of domestication poses a plethora of more nuanced questions, in particular regarding plants’ abilities to adapt to new environments, and the genomic scars those forced changes leave behind. Ancient DNA from archaeobotanical remains offers a window through which we are now beginning to unravel these histories, in a large part through the technical advances in sequencing technologies and theoretical advances in genome evolution. In this chapter, we will explore how plant archaeogenomics is characterized in a large part by plasticity, of genome size, genome activity, and transposable elements, through specific mechanisms including introgression, mutation load, and stress response. We will also examine the various substrates from which invaluable information can be recovered, by no means limited to DNA from seeds.

Keywords

Adaptation Agriculture Archaeobotany Archaeogenomics Domestication Functionalization Genome size Heterozygosity Introgression Mutation load Ploidy Transposable elements 

References

  1. Allaby RG. Integrating the processes in the evolutionary system of domestication. J Exp Bot. 2010;61:935–44.PubMedGoogle Scholar
  2. Allaby RG, Fuller DQ, Brown TA. The genetic expectations of a protracted model for the origins of domesticated crops. Proc Natl Acad Sci U S A. 2008;105:13982–6.PubMedPubMedCentralGoogle Scholar
  3. Allaby RG, Gutaker R, Clarke AC, Pearson N, Ware R, Palmer SA, Kitchen JL, Smith O. Using archaeogenomics and computational approaches to unravel the history of local adaptation in crops. Philos Trans R Soc B. 2014;370:20130377.Google Scholar
  4. Allaby RG, Kitchen JL, Fuller DQ. Surprisingly low limits of selection in plant domestication. Evol Bioinforma. 2015;11(S2):41–51.Google Scholar
  5. Allaby RG, Stevens C, Lucas L, Maeda O, Fuller DQ. Geographic mosaics and changing rates of cereal domestication. Philos Trans R Soc B. 2017;372:20160429.Google Scholar
  6. Allaby RG, Ware RL, Kistler L. A re-evaluation of the domestication bottleneck from archaeogenomic evidence. Evol Appl. 2018;1–9.  https://doi.org/10.1111/eva.12680.Google Scholar
  7. Anderson PK, Cunningham AA, Patel NG, Morales FJ, Epstein PR, Daszak P. Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol Evol. 2004;19:535–44.PubMedGoogle Scholar
  8. Banks W, Antunes N, Rigaud S, d’Errico F. Ecological constraints on the first prehistoric farmers in Europe. J Archaeol Sci. 2013;40:2746–53.Google Scholar
  9. Beissinger TM, et al. Recent demography drives changes in linked selection across the maize genome. Nat Plants. 2016;2:16084.Google Scholar
  10. Bilinski P, Albert PS, Berg JJ, Birchler JA, Grote MN, Lorant A, Quezada J, Swarts K, Yang J, Ross-Ibarra J. Parallel altitudinal clines reveal trends in adaptive evolution of genome size in Zea mays. PLoS Genet. 2018;14(5):e1007162.PubMedPubMedCentralGoogle Scholar
  11. Blanc G, Wolfe KH. Widespread paleopolyploidy in mode plant species inferred from age distributions of duplicate genes. Plant Cell. 2004;16:1667–78.PubMedPubMedCentralGoogle Scholar
  12. Brown TA, Jones MK, Powell W, Allaby RG. The complex origins of domesticated crops. Trends Ecol Evol. 2009;24:103–9.PubMedGoogle Scholar
  13. Cavalier-Smith T. Economy, sped and size matter: evolutionary forces driving nuclear genome miniaturization and expansion. Ann Bot. 2005;95:147–75.PubMedPubMedCentralGoogle Scholar
  14. Chénais B, Caruso A, Hiard S, Casse N. The impact of transposable elements on eukaryotic genomes: from genome size increase to adaptation to stressful environments. Gene. 2012;509:7–15.PubMedGoogle Scholar
  15. Civáň P, Ivaničová Z, Brown TA. Reticulated origin of domesticated emmer wheat supports a dynamic model for the emergence of agriculture in the fertile crescent. PLoS One. 2013;8(11):e81955.PubMedPubMedCentralGoogle Scholar
  16. Colledge S, Conolly J, Shennan S. The evolution of early Neolithic farming from SW Asian origins to NW European limits. Eur J Archaeol. 2005;8:137–56.Google Scholar
  17. Coward F, Shennan S, Colledge S, Conolly J, Collard M. The spread of Neolithic plant economies from the near East to northwest Europe: a phylogenetic analysis. J Archaeol Sci. 2008;35:42–56.Google Scholar
  18. Da Fonseca R, et al. The origin and evolution of maize in the Southwestern United States. Nat Plants. 2015;1:14003.Google Scholar
  19. De Giorgio M, Jakobsson M, Rosenberg NA. Explaining worldwide patterns of human genetic variation using a coalescent-based serial founder model of migration outward from Africa. Proc Natl Acad Sci U S A. 2009;106:16057–62.Google Scholar
  20. Devos KM, Brown JKM, Bennetzen JL. Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res. 2002;12:1075–9.PubMedPubMedCentralGoogle Scholar
  21. Di Donato A, Filippone E, Ercolano MR, Frusciante L. Genome sequencing of ancient plant remains: findings, uses and potential applications for the study and improvement of modern crops. Front Plant Sci. 2018;9:441.PubMedPubMedCentralGoogle Scholar
  22. Diez CM, Meca E, Tenaillon MI, Gaut BS. Three groups of transposable elements with contrasting copy number dynamics and host responses in the maize (Zea mays ssp. mays) genome. PLoS Genet. 2014;10(4):e1004298.PubMedPubMedCentralGoogle Scholar
  23. Eyre-Walker A, Gaut RL, Hilton H, Feldman DL, Gaut BS. Investigation of the bottleneck leading to the domestication of maize. Proc Natl Acad Sci U S A. 1998;95:4441–6.PubMedPubMedCentralGoogle Scholar
  24. Fraser H. Genome-wide approaches to the study of adaptive gene expression evolution. BioEssays. 2011;33:469–77.PubMedGoogle Scholar
  25. Fuller DQ. Contrasting patterns in crop domestication and domestication rates: recent archaeological insights from the Old World. Ann Bot. 2007;100:903–24.PubMedPubMedCentralGoogle Scholar
  26. Fuller DQ, Allaby RG, Stevens C. Domestication as Innovation: the entanglement of techniques, technology and chance in the domestication of cereal crops. World Archaeol. 2010;42:13–28.Google Scholar
  27. Gaut BS, Diez CM, Morrell PL. Genomics and the contrasting dynamics of annual and perennial domestication. Trends Genet. 2015;31:709–19.PubMedGoogle Scholar
  28. Gaut BS, Seymour DK, Liu Q, et al. Demography and its effects on genomic variation in crop domestication. Nat Plants. 2018;4:512–20.PubMedGoogle Scholar
  29. Gutaker R, Burbano H. Reinforcing plant genomics using ancient DNA. Curr Opin Plant Biol. 2017;36:38–45.PubMedGoogle Scholar
  30. Gutaker R, Zaidem M, Fu Y-B, Diederichsen A, Smith O, Ware R, Allaby RG. Adaptation to European latitudes through assimilation of wild diversity at the LuTFL1 locus altered architecture and promoted fiber production in flax. BioRxiv. 2017;  https://doi.org/10.1101/178772.
  31. Haldane JBS. The cost of selection. J Genet. 1957;55:511–24.Google Scholar
  32. Hammer K. The domestication syndrome. Kulturpflanze. 1984;32:11–34.Google Scholar
  33. Harlan J, de Wet JMJ, Price EG. Comparative evolution of cereals. Evolution. 1973;27:311–25.PubMedGoogle Scholar
  34. Henn BM, Botigué LR, Bustamante CD, Clarke AG, Gravel S. Estimating the mutation load in humans. Nat Rev Genet. 2015;16:333–43.PubMedPubMedCentralGoogle Scholar
  35. Hill WG, Robertson A. The effect of linkage on limits to artificial selection. Genet Res Camb. 1966;8:269–94.Google Scholar
  36. Jaenicke-Despres V, Buckler ES, Smith BD, Gilbert MTP, Cooper A, Doebley J, Paabo S. Early allelic selection in maize as revealed by ancient DNA. Science. 2003;302:1206–8.Google Scholar
  37. Jones RAC. Plant virus emergence and evolution: origins, new encounter scenarios, factors driving emergence, effects of changing world conditions, and prospects for future control. Virus Res. 2009;141:113–30.PubMedGoogle Scholar
  38. Jones H, Leigh FJ, Mackay I, Bower MA, Smith LMJ, Charles MP, Jones G, Jones MK, Brown TA, Powell W. Population-based resequencing reveals that the flowering time adaptation of cultivated barley originated east of the fertile crescent. Mol Biol Evol. 2008;25:2211e2219.Google Scholar
  39. Jones G, Jones H, Charles MP, Jones MK, Colledge S, Leigh FJ, Lister DA, Smith LMJ, Powell W, Brown TA. Phylogeographic analysis of barley DNA as evidence for the spread of Neolithic agriculture through Europe. J Archaeol Sci. 2012;39:3230–8.Google Scholar
  40. Kistler L, Shapiro B. Ancient DNA confirms a local origin of domesticated chenopod in eastern North America. J Archaeol Sci. 2011;38:3549–54.Google Scholar
  41. Kistler L, Newsom LA, Ryan TM, Clarke AC, Smith BD, Perry GH. Gourds and squashes (Cucurbita spp.) adapted to megafaunal extinction and ecological anachronism through domestication. Proc Natl Acad Sci U S A. 2015;112:15107–12.PubMedPubMedCentralGoogle Scholar
  42. Larson G, et al. Current perspectives and the future of domestication studies. Proc Natl Acad Sci U S A. 2014;111:6139–46.PubMedPubMedCentralGoogle Scholar
  43. Leitch IJ, Hanson L, Winfield M, Parker J, Bennett MD. Nuclear DNA C-values complete familial representation in gymnosperms. Ann Bot. 2001;88:843–9.Google Scholar
  44. Lenser T, Theißen G. Molecular mechanisms involved in convergent crop domestication. Trends Plant Sci. 2013;18(12):704–14.PubMedGoogle Scholar
  45. Liu Q, Zhou Y, Morrell PL, Gaut BS. Deleterious variants in Asian rice and the potential cost of domestication. Mol Biol Evol. 2017;34:908–24.Google Scholar
  46. Makino T, Rubin CJ, Carneiro M, Axelsson E, Andersson L, Webster MT. Elevated proportions of deleterious genetic variation in domestic animals and plants. Genome Biol Evol. 2018;10:276–90.PubMedPubMedCentralGoogle Scholar
  47. Marsden CD, et al. Bottlenecks and selective sweeps during domestication have increased deleterious genetic variation in dogs. Proc Natl Acad Sci U S A. 2016;113:152–7.PubMedGoogle Scholar
  48. Mascagni F, Barghini E, Giordani T, Rieseberg L, Cavallini A, Natali L. Repetitive DNA and plant domestication: variation in copy number and proximity to genes of LTR-retrotransposons among wild and cultivated sunflower (Helianthus annuus) genotypes. Genome Biol Evol. 2015;7(12):3368–82.PubMedPubMedCentralGoogle Scholar
  49. Mascher M, et al. Genomic analysis of 6,000-year-old cultivated grain illuminates the domestication history of barley. Nat Genet. 2016;48:1089–93.Google Scholar
  50. Mazet O, Rodríguez W, Grusea S, Boitard S, Chikhi L. On the importance of being structured: instantaneous coalescence rates and human evolution – lessons for ancestral population size inference. Heredity. 2016;116:362–71.Google Scholar
  51. Meyer RS, Purugganan MD. Evolution of crop species: genetics of domestication and diversification. Nat Rev Genet. 2013;14:840–52.PubMedPubMedCentralGoogle Scholar
  52. Meyer RS, et al. Domestication history and geographical adaptation inferred from a SNP map of African rice. Nat Genet. 2016;48:1083–8.Google Scholar
  53. Meyer RS, DuVal AE, Jensen HR. Patterns and processes in crop domestication: an historical review and quantitative analysis of 203 global food crops. New Phytol. 2012;  https://doi.org/10.1111/j.1469-8137.2012.04253.x.PubMedGoogle Scholar
  54. Middleton CP, Stein N, Keller B, Kilian B, Wicker T. Comparative analysis of genome composition in Triticeae reveals strong variation in transposable element dynamics and nucleotide diversity. Plant J. 2013;73:347–56.PubMedGoogle Scholar
  55. Moyers BT, Morrell PL, McKay JK. Genetic costs of domestication and improvement. Heredity. 2017;109:103–16.Google Scholar
  56. Naito K, Cho E, Yang G, Campbell MA, Yano K, Okumoto Y, Tanisaka T, Wessler SR. Dramatic amplification of a rice transposable element during recent domestication. Proc Natl Acad Sci U S A. 2006;103:17620–5.PubMedPubMedCentralGoogle Scholar
  57. Oliver KR, Greene WK. Transposable elements: powerful facilitators of evolution. BioEssays. 2009;31:703–14.PubMedGoogle Scholar
  58. Oliver KR, Greene WK. Transposable elements and viruses as factors in adaptation and evolution: an expansion and strengthening of the TE-Thrust hypothesis. Ecol Evol. 2012;2:2912–33.PubMedPubMedCentralGoogle Scholar
  59. Oliver KR, McComb JA, Greene WK. Transposable elements: powerful contributors to angiosperm evolution and diversity. Genome Biol Evol. 2013;5(10):1886–901.PubMedPubMedCentralGoogle Scholar
  60. Palmer SA, Moore JD, Clapham AJ, Rose P, Allaby RG. Archaeogenetic evidence of ancient Nubian barley evolution from six to two-row indicates local adaptation. PLoS One. 2009;4(7):e6301.PubMedPubMedCentralGoogle Scholar
  61. Palmer SA, Clapham AJ, Rose P, Freitas F, Owen BD, Beresford-Jones D, Moore JD, Kitchen JL, Allaby RG. Archaeogenomic evidence of punctuated genome evolution in Gossypium. Mol Biol Evol. 2012a;29(8):2031–8.Google Scholar
  62. Palmer S, Smith O, Allaby RG. The blossoming of plant archaeogenetics. Ann Anat. 2012b;194:146–56.PubMedGoogle Scholar
  63. Pellicer J, Hidalgo O, Dodsworth S, Leitch IJ. Genome size diversity and its impact on the evolution of land plants. Genes. 2018;9:88.PubMedCentralGoogle Scholar
  64. Perrier X, et al. Multidisciplinary perspectives on banana (Musa spp.) domestication. Proc Natl Acad Sci U S A. 2011;108:11311–8.PubMedPubMedCentralGoogle Scholar
  65. Piperno DR, Moreno JE, Iriarte J, Holst I, Lachniet M, Jones JG, Ranere AJ, Castanzo R. Lat Pleistocene and Holocene environmental history of the Iguala Valley, Central Balsas watershed of Mexico. Proc Natl Acad Sci U S A. 2007;104:11874–81.PubMedPubMedCentralGoogle Scholar
  66. Piperno DR, Ranere AJ, Holst I, Iriarte J, Dickau R. Starch grain and phytolith evidence from early ninth millennium B.P. maize from the Central Balsas River Valley, Mexico. Proc Natl Acad Sci U S A. 2009;106:5019–24.PubMedPubMedCentralGoogle Scholar
  67. Poets AM, Fang Z, Clegg MT, Morell PL. Barley landraces are characterized by geographically heterogeneous genomic origins. Genome Biol. 2015;16:173.PubMedPubMedCentralGoogle Scholar
  68. Poinar HN, Schwarz C, Qi J, Shapiro B, MacPhee RDE, Buigues B, Tikhonov A, Huson DH, Tomsho LP, Auch A, et al. Metagenomics to paleogenomics: large-scale sequencing of mammoth DNA. Science. 2006;311:392–4.Google Scholar
  69. Purugganan MD, Fuller DQ. The nature of selection during plant domestication. Nature. 2009;457:843–8.Google Scholar
  70. Purugganan MD, Fuller DQ. Archaeological data reveal slow rates of evolution during plant domestication. Evolution. 2011;65:171–83.PubMedGoogle Scholar
  71. Puttick MN, Clark J, Donoghue PCJ. Size is not everything: rates of genome size evolution, not C-value, correlate with speciation in angiosperms. Proc R Soc B. 2015;282:20152289.PubMedGoogle Scholar
  72. Ramos-Madrigal J, Smith BD, Moreno-Mayaer V, Gopalakrishnan S, Ross-Ibarra J, Gilbert MTP, Wales N. Genome sequence of a 5,310-year-old maize cob provides insights into the early stages of maize domestication. Curr Biol. 2016;26:3195–201.Google Scholar
  73. Renaut S, Rieseberg LH. The accumulation of deleterious mutations as a consequence of domestication and improvement in sunflowers and other Compositae crops. Mol Biol Evol. 2015;32:2273–83.PubMedGoogle Scholar
  74. Rensing SA. Why we need more non-seed plant models. New Phytol. 2017;216:355–60.PubMedGoogle Scholar
  75. Schlumbaum A, Tensen M, Jaenicke-Després V. Ancient plant DNA in archaeobotany. Veg Hist Archaeobotany. 2008;17:233–44.Google Scholar
  76. Schubert I, Vu TH. Genome stability and evolution: attempting a holistic view. Trends Plant Sci. 2016;21:749–57.PubMedGoogle Scholar
  77. Schubert M, et al. Prehistoric genomes reveal the genetic foundation and cost of horse domestication. Proc Natl Acad Sci U S A. 2014;111:E5661–9.PubMedPubMedCentralGoogle Scholar
  78. Shennan S, Downey SS, Timpson A, et al. Regional population collapse followed initial agricultural booms in mid-Holocene Europe. Nat Commun. 2013;4:2486.PubMedPubMedCentralGoogle Scholar
  79. Shewry PR, Hey S. Do “ancient” wheat species differ from modern bread wheat in their contents of bioactive components? J Cereal Sci. 2015;65:236–43.Google Scholar
  80. Sidhu GK, Warzecha T, Pawlowski WP. Evolution of meiotic recombination genes in maize and teosinte. BMC Genomics. 2017;18:106.PubMedPubMedCentralGoogle Scholar
  81. Simonin KA, Roddy AB. Genome downsizing, physiological novelty, and the global dominance of flowering plants. PLoS Biol. 2018;16(1):e2003706.PubMedPubMedCentralGoogle Scholar
  82. Smith O, Clapham A, Rose P, Liu Y, Wang J, Allaby RG. A complete ancient RNA genome: identification, reconstruction and evolutionary history of archaeological Barley Stripe Mosaic Virus. Sci Rep. 2014a;4:4003.PubMedPubMedCentralGoogle Scholar
  83. Smith O, Clapham A, Rose P, Liu Y, Wang J, Allaby RG. Genomic methylation patterns in archaeological barley show de-methylation as a time-dependent diagenetic process. Sci Rep. 2014b;4:5559.PubMedPubMedCentralGoogle Scholar
  84. Smith O, Momber G, Bates R, Garwood P, Fitch S, Pallen M, Gaffney V, Allaby RG. Sedimentary DNA from a submerged site reveals wheat in the British Isles 8000 years ago. Science. 2015;347:998–1001.Google Scholar
  85. Smith O, Palmer SA, Clapham AJ, Rose P, Liu Y, Wang J, Allaby RG. Small RNA activity in archaeological barley shows novel germination inhibition in response to environment. Mol Biol Evol. 2017;34:2555–62.PubMedPubMedCentralGoogle Scholar
  86. Smith O, Nicholson W, Fuller D, Stephens C, Kistler L, Mace E, Jordan D, Barker G, Allaby RG. A domestication history of dynamic adaptation and genomic deterioration in sorghum. BioRxiv. 2018;  https://doi.org/10.1101/336503.
  87. Soltis DE, et al. Polyploidy and angiosperm diversification. Am J Bot. 2009;96:336–48.PubMedGoogle Scholar
  88. Stephens CJ, Fuller DQ. Did Neolithic farming fail? The case for a Bronze Age agricultural revolution in the British Isles. Antiquity. 2012;86:707–22.Google Scholar
  89. Stukenbrock EH, McDonald BA. The origins of plant pathogens in agro-ecosystems. Annu Rev Phytopathol. 2008;46:75–100.PubMedGoogle Scholar
  90. Swarts K, et al. Genomic estimation of complex traits reveals ancient maize adaptation to temperate North America. Science. 2017;357:512–5.Google Scholar
  91. Tanno KI, Willcox G. How fast was wild wheat domesticated? Science. 2006;311:1886.PubMedGoogle Scholar
  92. Tiley GP, Burleigh G. The relationship of recombination rate, genome structure, and patterns of molecular evolution across angiosperms. BMC Evol Biol. 2015;15:194.PubMedPubMedCentralGoogle Scholar
  93. Vallebueno-Estrada M, et al. The earliest maize from San Marcos Tehuacán is a partial domesticate with genomic evidence of inbreeding. Proc Natl Acad Sci U S A. 2016;113:14151–6.PubMedPubMedCentralGoogle Scholar
  94. van Heerwaarden J, Doebley J, Briggs WH, Glaubitz JC, Goodman MM, Jesus Sanchez Gonzalez J, Ross-Ibarra R. Genetic signals of origin, spread and introgression in a large sample of maize landraces. Proc Natl Acad Sci U S A. 2011;108:1088–92.PubMedGoogle Scholar
  95. Vinogradov AE. Selfish DNA is maladaptive: evidence from the plant Red List. Trends Genet. 2003;19:609–14.PubMedGoogle Scholar
  96. Wang L, Beissinger TM, Lorant A, Ross-Ibarra C, Ross-Ibarra J, Hufford MB. The interplay of demography and selection during maize domestication and expansion. Genome Biol. 2017;18:215.PubMedPubMedCentralGoogle Scholar
  97. Yoshida K, Schuenemann VJ, Cano LM, Pais M, Mishra B, Sharma R, Lanz C, Martin FN, Kamoun S, Krause J, et al. The rise and fall of the Phytophthora infestans lineage that triggered the Irish potato famine. elife. 2013;2:e00731.PubMedPubMedCentralGoogle Scholar
  98. Zaki EA, Ghany AAA. Ty3/gypsy retrotransposons in Egyptian cotton (G. barbadense). J Cotton Sci. 2004;8:179–85.Google Scholar
  99. Zeder M. Core questions in domestication research. Proc Natl Acad Sci U S A. 2015;112:3191–8.PubMedPubMedCentralGoogle Scholar
  100. Zerega NJC, Ragone D, Motley T. Complex origins of breadfruit (Artocarpus altilis, Moraceae): implications for human migrations in Oceania. Am J Bot. 2004;91:760–6.PubMedGoogle Scholar
  101. Zhou Y, Massonnet M, Sanjak JS, Cantu D, Gaut BS. Evolutionary genomics of grape (Vitis vinifera ssp. vinifera) domestication. Proc Natl Acad Sci U S A. 2017;114:11715–20.PubMedPubMedCentralGoogle Scholar
  102. Zhu Q, Zheng X, Luo J, Gaut B, Song G. Multilocus analysis of nucleotide variation of Oryza sativa and its wild relatives: severe bottleneck during domestication of rice. Mol Biol Evol. 2007;24:875–88.PubMedGoogle Scholar
  103. Ziolkowski PA, et al. Natural variation and dosage of the HEI10 meiotic E3 ligase control Arabidopsis crossover recombination. Genes Dev. 2017;31:306–17.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Life SciencesUniversity of WarwickCoventryUK
  2. 2.Natural History Museum of DenmarkCopenhagenDenmark
  3. 3.Department of AnthropologySmithsonian Institution, National Museum of Natural HistoryWashington, DCUSA

Personalised recommendations