Advertisement

Population Genomics of Archaea: Signatures of Archaeal Biology from Natural Populations

  • David J. Krause
  • Rachel J. Whitaker
Chapter
Part of the Population Genomics book series (POGE)

Abstract

Since the advance of high-throughput whole-genome sequencing, microbial population biology has been providing insight into the processes that generate and maintain genomic diversity and shedding light on the complex lives of microorganisms in the natural environment. The domain archaea harbors a wealth of diverse populations useful for studying microbial population biology in highly varied environments, and their deep divergence from Bacteria creates a distinct, independent field of study despite superficial similarities. Today, much of the knowledge derived from archaeal population genomics is the result of culturing individuals from the environment and sequencing isolates, which has enabled the study of population biology for several archaeal species, including mutation rates, recombination rates, and the influence of environmental selection. With a constantly increasing volume of metagenomic data and advancing technology for single-cell genomics, population genomics is making its way into the uncultured majority that has otherwise evaded previous population genomic techniques, and the unique biology of the archaea is poised to enhance our understanding of microbial population biology.

Keywords

Archaea Genome architecture Population structure Recombination Selection Species 

References

  1. Ajon M, Fröls S, van Wolferen M, Stoecker K, Teichmann D, Driessen AJM, Grogan DW, Albers S-V, Schleper C. UV-inducible DNA exchange in hyperthermophilic archaea mediated by type IV pili. Mol Microbiol. 2011;82:807–17.CrossRefGoogle Scholar
  2. Anderson IJ, DasSarma P, Lucas S, Copeland A, Lapidus A, Del Rio TG, Tice H, Dalin E, Bruce DC, Goodwin L, et al. Complete genome sequence of the Antarctic Halorubrum lacusprofundi type strain ACAM 34. Stand Genomic Sci. 2016;11:70.CrossRefGoogle Scholar
  3. Becraft ED, Dodsworth JA, Murugapiran SK, Thomas SC, Ohlsson JI, Stepanauskas R, Hedlund BP, Swingley WD. Genomic comparison of two family-level groups of the uncultivated NAG1 archaeal lineage from chemically and geographically disparate hot springs. Front Microbiol. 2017;8:2082.CrossRefGoogle Scholar
  4. Bolduc B, Shaughnessy DP, Wolf YI, Koonin EV, Roberto FF, Young M. Identification of novel positive-strand RNA viruses by metagenomic analysis of archaea-dominated Yellowstone hot springs. J Virol. 2012;86:5562–73.CrossRefGoogle Scholar
  5. Borrel G, McCann A, Deane J, Neto MC, Lynch DB, Brugère J-F, O’Toole PW. Genomics and metagenomics of trimethylamine-utilizing archaea in the human gut microbiome. ISME J. 2017;11:2059–74.CrossRefGoogle Scholar
  6. Brock TD, Brock KM, Belly RT, Weiss RL. Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch Mikrobiol. 1972;84:54–68.CrossRefGoogle Scholar
  7. Bult CJ, White O, Olsen GJ, Zhou L, Fleischmann RD, Sutton GG, Blake JA, FitzGerald LM, Clayton RA, Gocayne JD, et al. Complete genome sequence of the Methanogenic archaeon, Methanococcus jannaschii. Science. 1996;273:1058–73.CrossRefGoogle Scholar
  8. Cadillo-Quiroz H, Didelot X, Held NL, Herrera A, Darling A, Reno ML, Krause DJ, Whitaker RJ. Patterns of gene flow define species of thermophilic archaea. PLoS Biol. 2012;10:e1001265.CrossRefGoogle Scholar
  9. Datta A, Hendrix M, Lipsitch M, Jinks-Robertson S. Dual roles for DNA sequence identity and the mismatch repair system in the regulation of mitotic crossing-over in yeast. Proc Natl Acad Sci U S A. 1997;94:9757–62.CrossRefGoogle Scholar
  10. Deppenmeier U, Johann A, Hartsch T, Merkl R, Schmitz RA, Martinez-Arias R, Henne A, Wiezer A, Bäumer S, Jacobi C, et al. The genome of Methanosarcina mazei: evidence for lateral gene transfer between bacteria and archaea. J Mol Microbiol Biotechnol. 2002;4:453–61.PubMedGoogle Scholar
  11. Didelot X, Lawson D, Darling A, Falush D. Inference of homologous recombination in Bacteria using whole-genome sequences. Genetics. 2010;186:1435–49.CrossRefGoogle Scholar
  12. Eppley JM, Tyson GW, Getz WM, Banfield JF. Genetic exchange across a species boundary in the archaeal genus ferroplasma. Genetics. 2007;177:407–16.CrossRefGoogle Scholar
  13. Flynn KM, Vohr SH, Hatcher PJ, Cooper VS. Evolutionary rates and gene dispensability associate with replication timing in the archaeon Sulfolobus islandicus. Genome Biol Evol. 2010;2:859–69.CrossRefGoogle Scholar
  14. Fraser C, Hanage WP, Spratt BG. Recombination and the nature of bacterial speciation. Science. 2007;315:476–80.CrossRefGoogle Scholar
  15. Fullmer MS, Soucy SM, Swithers KS, Makkay AM, Wheeler R, Ventosa A, Gogarten JP, Papke RT. Population and genomic analysis of the genus Halorubrum. Front Microbiol. 2014;5:140.CrossRefGoogle Scholar
  16. Gawad C, Koh W, Quake SR. Single-cell genome sequencing: current state of the science. Nat Rev Genet. 2016;17:175–88.CrossRefGoogle Scholar
  17. Gilbert JA, Dupont CL. Microbial metagenomics: beyond the genome. Annu Rev Mar Sci. 2011;3:347–71.CrossRefGoogle Scholar
  18. Golyshina OV, Pivovarova TA, Karavaiko GI, Kondratéva TF, Moore ER, Abraham WR, Lünsdorf H, Timmis KN, Yakimov MM, Golyshin PN. Ferroplasma acidiphilum gen. nov., sp. nov., an acidophilic, autotrophic, ferrous-iron-oxidizing, cell-wall-lacking, mesophilic member of the Ferroplasmaceae fam. nov., comprising a distinct lineage of the archaea. Int J Syst Evol Microbiol. 2000;50(Pt 3):997–1006.CrossRefGoogle Scholar
  19. Gudbergsdóttir SR, Menzel P, Krogh A, Young M, Peng X. Novel viral genomes identified from six metagenomes reveal wide distribution of archaeal viruses and high viral diversity in terrestrial hot springs. Environ Microbiol. 2016;18:863–74.CrossRefGoogle Scholar
  20. Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glöckner FO. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41:e1.CrossRefGoogle Scholar
  21. Könneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature. 2005;437:543–6.CrossRefGoogle Scholar
  22. Krause DJ, Didelot X, Cadillo-Quiroz H, Whitaker RJ. Recombination shapes genome architecture in an organism from the archaeal domain. Genome Biol Evol. 2014;6:170–8.CrossRefGoogle Scholar
  23. Lundgren M, Andersson A, Chen L, Nilsson P, Bernander R. Three replication origins in Sulfolobus species: synchronous initiation of chromosome replication and asynchronous termination. Proc Natl Acad Sci U S A. 2004;101:7046–51.CrossRefGoogle Scholar
  24. Maiden MCJ. Multilocus sequence typing of bacteria. Annu Rev Microbiol. 2006;60:561–88.CrossRefGoogle Scholar
  25. Maiden MCJ, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R, Zhang Q, Zhou J, Zurth K, Caugant DA, et al. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A. 1998;95:3140–5.CrossRefGoogle Scholar
  26. Marcy Y, Ouverney C, Bik EM, Lösekann T, Ivanova N, Martin HG, Szeto E, Platt D, Hugenholtz P, Relman DA, et al. Dissecting biological “dark matter” with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth. Proc Natl Acad Sci U S A. 2007;104:11889–94.CrossRefGoogle Scholar
  27. Mau B, Glasner JD, Darling AE, Perna NT. Genome-wide detection and analysis of homologous recombination among sequenced strains of Escherichia coli. Genome Biol. 2006;7:R44.CrossRefGoogle Scholar
  28. Mormile MR, Biesen MA, Gutierrez MC, Ventosa A, Pavlovich JB, Onstott TC, Fredrickson JK. Isolation of Halobacterium salinarum retrieved directly from halite brine inclusions. Environ Microbiol. 2003;5:1094–102.CrossRefGoogle Scholar
  29. Mullakhanbhai MF, Larsen H. Halobacterium volcanii spec. nov., a Dead Sea halobacterium with a moderate salt requirement. Arch Microbiol. 1975;104:207–14.CrossRefGoogle Scholar
  30. Mwirichia R, Alam I, Rashid M, Vinu M, Ba-Alawi W, Anthony Kamau A, Kamanda Ngugi D, Göker M, Klenk H-P, Bajic V, et al. Metabolic traits of an uncultured archaeal lineage – MSBL1 – from brine pools of the Red Sea. Sci Rep. 2016;6:19181.CrossRefGoogle Scholar
  31. Naghoni A, Emtiazi G, Amoozegar MA, Cretoiu MS, Stal LJ, Etemadifar Z, Fazeli SAS, Bolhuis H. Microbial diversity in the hypersaline Lake Meyghan, Iran. Sci Rep. 2017;7:11522.CrossRefGoogle Scholar
  32. Papke RT, Koenig JE, Rodríguez-Valera F, Doolittle WF. Frequent recombination in a saltern population of Halorubrum. Science. 2004;306:1928–9.PubMedGoogle Scholar
  33. Parks DH, Rinke C, Chuvochina M, Chaumeil P-A, Woodcroft BJ, Evans PN, Hugenholtz P, Tyson GW. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat Microbiol. 2017;2:1533–42.CrossRefGoogle Scholar
  34. Reno ML, Held NL, Fields CJ, Burke PV, Whitaker RJ. Biogeography of the Sulfolobus islandicus pan-genome. Proc Natl Acad Sci U S A. 2009;106:8605–10.CrossRefGoogle Scholar
  35. Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, Cheng J-F, Darling A, Malfatti S, Swan BK, Gies EA, et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature. 2013;499:431–7.CrossRefGoogle Scholar
  36. Robinson NP, Dionne I, Lundgren M, Marsh VL, Bernander R, Bell SD. Identification of two origins of replication in the single chromosome of the archaeon Sulfolobus solfataricus. Cell. 2004;116:25–38.CrossRefGoogle Scholar
  37. Schleper C, Holz I, Janekovic D, Murphy J, Zillig W. A multicopy plasmid of the extremely thermophilic archaeon Sulfolobus effects its transfer to recipients by mating. J Bacteriol. 1995;177:4417–26.CrossRefGoogle Scholar
  38. Schloss PD, Girard RA, Martin T, Edwards J, Thrash JC. Status of the archaeal and bacterial census: an update. MBio. 2016;7:e00201–16.CrossRefGoogle Scholar
  39. Shapiro BJ, Polz MF. Ordering microbial diversity into ecologically and genetically cohesive units. Trends Microbiol. 2014;22:235–47.CrossRefGoogle Scholar
  40. Stedman KM, She Q, Phan H, Holz I, Singh H, Prangishvili D, Garrett R, Zillig W. pING family of conjugative plasmids from the extremely thermophilic archaeon Sulfolobus islandicus: insights into recombination and conjugation in crenarchaeota. J Bacteriol. 2000;182:7014–20.CrossRefGoogle Scholar
  41. Torreblanca M, Rodriguez-Valera F, Juez G, Ventosa A, Kamekura M, Kates M. Classification of non-alkaliphilic halobacteria based on numerical taxonomy and polar lipid composition, and description of Haloarcula gen. nov. and Haloferax gen. nov. Syst Appl Microbiol. 1986;8:89–99.CrossRefGoogle Scholar
  42. Tully BJ, Graham ED, Heidelberg JF. The reconstruction of 2,631 draft metagenome-assembled genomes from the global oceans. Sci Data. 2018;5:170203.CrossRefGoogle Scholar
  43. van Wolferen M, Wagner A, van der Does C, Albers S-V. The archaeal Ced system imports DNA. Proc Natl Acad Sci. 2016;113:2496–501.CrossRefGoogle Scholar
  44. Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu D, Paulsen I, Nelson KE, Nelson W, et al. Environmental genome shotgun sequencing of the Sargasso Sea. Science. 2004;304:66–74.CrossRefGoogle Scholar
  45. Vos M, Didelot X. A comparison of homologous recombination rates in bacteria and archaea. ISME J. 2009;3:199–208.CrossRefGoogle Scholar
  46. Whitaker RJ, Grogan DW, Taylor JW. Geographic barriers isolate endemic populations of hyperthermophilic archaea. Science. 2003;301:976–8.CrossRefGoogle Scholar
  47. Whitaker RJ, Grogan DW, Taylor JW. Recombination shapes the natural population structure of the hyperthermophilic archaeon Sulfolobus islandicus. Mol Biol Evol. 2005;22:2354–61.CrossRefGoogle Scholar
  48. Woese CR, Fox GE. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci U S A. 1977;74:5088–90.CrossRefGoogle Scholar
  49. Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms: proposal for the domains archaea, bacteria, and eucarya. Proc Natl Acad Sci U S A. 1990;87:4576–9.CrossRefGoogle Scholar
  50. Wolfe RS. Techniques for cultivating methanogens. Methods Enzymol. 2011;494:1–22.  https://doi.org/10.1016/B978-0-12-385112-3.00001-9.CrossRefPubMedGoogle Scholar
  51. Woyke T, Xie G, Copeland A, González JM, Han C, Kiss H, Saw JH, Senin P, Yang C, Chatterji S, et al. Assembling the marine metagenome, one cell at a time. PLoS One. 2009;4:e5299.CrossRefGoogle Scholar
  52. Wu Z, Liu J, Yang H, Xiang H. DNA replication origins in archaea. Front Microbiol. 2014;5:179.PubMedPubMedCentralGoogle Scholar
  53. Youngblut ND, Wirth JS, Henriksen JR, Smith M, Simon H, Metcalf WW, Whitaker RJ. Genomic and phenotypic differentiation among Methanosarcina mazei populations from Columbia River sediment. ISME J. 2015;9:2191–205.CrossRefGoogle Scholar
  54. Zhang C, Krause DJ, Whitaker RJ. Sulfolobus islandicus: a model system for evolutionary genomics. Biochem Soc Trans. 2013;41:458–62.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J. F. Crow Institute for the Study of EvolutionUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Department of Microbiology, Carl R. Woese Institute for Genomic BiologyUniversity of Illinois Urbana-ChampaignChampaignUSA

Personalised recommendations