A Reverse Ecology Framework for Bacteria and Archaea

  • Philip Arevalo
  • David VanInsberghe
  • Martin F. PolzEmail author
Part of the Population Genomics book series (POGE)


Advances in sequencing technologies have led to a rapid increase in available bacterial and archaeal genome information, but for much of this diversity, little ecological information is available. Reverse ecology provides a potential path forward by using genomic information to gain insight into the ecological associations and niche spaces of organisms. A crucial first step is to predict population structure, which provides the basis for analyzing genomes for evidence of ecological differentiation. Although delineation of bacterial and archaeal populations remains difficult, we outline how gene flow information can be used to identify populations as genetic units, which also are ecological units because adaptations can spread through them in a specific manner. This approach is particularly powerful when closely related populations are analyzed for signatures of differential selection that indicate recent ecological differentiation. Genome-wide association studies can also help identify mutations and genes underlying ecologically relevant traits. Albeit still in their infancy, reverse ecology approaches have the potential to order microbial diversity into genetically and ecologically cohesive units and hence provide the opportunity to test hypotheses about the evolutionary mechanisms creating and maintaining diversity within and between populations.


Archaea Bacteria Genomics Population structure Reverse ecology Speciation 


  1. Achtman M, Wagner M. Microbial diversity and the genetic nature of microbial species. Nat Rev Microbiol. 2008;6:431–40.PubMedGoogle Scholar
  2. Babteste E, Boucher Y. Lateral gene transfer challenges principles of microbial systematics. Trends Microbiol. 2008;16:200–2007.Google Scholar
  3. Balding D. A tutorial on statistical methods for population association studies. Nat Rev Genet. 2006;7:781–91.PubMedGoogle Scholar
  4. Bao YJ, Shapiro BJ, Lee SW, Ploplis VA, Castellino FJ. Phenotypic differentiation of Streptococcus pyogenes populations is induced by recombination-driven gene-specific sweeps. Sci Rep. 2016;6:36644.PubMedPubMedCentralGoogle Scholar
  5. Baumdicker F. The site frequency spectrum of dispensable genes. Theor Popul Biol. 2014;100C:13–25.PubMedGoogle Scholar
  6. Baumdicker F, Hess WR, Pfaffelhuber P. The infinitely many genes model for the distributed genome of bacteria. Genome Biol Evol. 2012;4:443–56.PubMedPubMedCentralGoogle Scholar
  7. Bendall ML, Stevens SL, Chan LK, Malfatti S, Schwientek P, Tremblay J, Schackwitz W, Martin J, Pati A, Bushnell B, et al. Genome-wide selective sweeps and gene-specific sweeps in natural bacterial populations. ISME J. 2016;10:1589–601.PubMedPubMedCentralGoogle Scholar
  8. Berg OG, Kurland CG. Evolution of microbial genomes: sequence acquisition and loss. Mol Biol Evol. 2002;19:2265–76.PubMedGoogle Scholar
  9. Bobay LM, Ochman H. Biological species are universal across life’s domains. Genome Biol Evol. 2017; Scholar
  10. Boucher Y, Cordero OX, Takemura A, Hunt DE, Schliep K, Bapteste E, Lopez P, Tarr CL, Polz MF. Local mobile gene pools rapidly cross species boundaries to create endemicity within global Vibrio cholerae populations. MBio. 2011;2:e00335–10.PubMedPubMedCentralGoogle Scholar
  11. Branco S, Bi K, Liao HL, Gladieux P, Badouin H, Ellison CE, Nguyen NH, Vilgalys R, Peay KG, Taylor JW, et al. Continental-level population differentiation and environmental adaptation in the mushroom Suillus brevipes. Mol Ecol. 2017;26:2063–76.PubMedGoogle Scholar
  12. Cadillo-Quiroz H, Didelot X, Heid NL, Herrara A, Darling A, Reno ML, Krause DJ, Whitaker RJ. Patterns of gene flow define species of thermophilic Archaea. PLoS Biol. 2012;10:e1001265.PubMedPubMedCentralGoogle Scholar
  13. Caro-Quintero A, Konstantinidis KT. Bacterial species may exist, metagenomics reveal. Environ Microbiol. 2012;14:347–55.PubMedGoogle Scholar
  14. Castillo-Ramirez S, Harris SR, Holden MT, He M, Parkhill J, Bentley SD, Feil EJ. The impact of recombination on dN/dS within recently emerged bacterial clones. PLoS Pathog. 2011;7:e1002129.PubMedPubMedCentralGoogle Scholar
  15. Chen PE, Shapiro BJ. The advent of genome-wide association studies for bacteria. Curr Opin Microbiol. 2015;25:17–24.PubMedGoogle Scholar
  16. Cohan FM. What are bacterial species. Annu Rev Microbiol. 2002;56:457–87.PubMedGoogle Scholar
  17. Coleman ML, Chisholm SW. Ecosystem-specific selection pressures revealed through comparative population genomics. Proc Natl Acad Sci U S A. 2010;107:18634–9.PubMedPubMedCentralGoogle Scholar
  18. Corander J, Fraser C, Gutmann MU, Arnold B, Hanage WP, Bentley SD, Lipsitch M, Croucher NJ. Frequency-dependent selection in vaccine-associated pneumococcal population dynamics. Nat Ecol Evol. 2017;1:1950–60.PubMedPubMedCentralGoogle Scholar
  19. Cordero OX, Polz MF. Explaining microbial genomic diversity in light of evolutionary ecology. Nat Rev Microbiol. 2014;12:263–73.PubMedGoogle Scholar
  20. Cordero OX, Ventouras LA, Delong EF, Polz MF. Public good dynamics drive evolution of iron acquisition strategies in natural bacterioplankton populations. Proc Natl Acad Sci U S A. 2012;109:20059–64.PubMedPubMedCentralGoogle Scholar
  21. Coyne JA, Orr HA. Speciation. Sunderland: Sinauer Associates; 2004.Google Scholar
  22. Croucher NJ, Mostowy R, Wymant C, Turner P, Bentley SD, Fraser C. Horizontal DNA transfer mechanisms of bacteria as weapons of intragenomic conflict. PLoS Biol. 2016;14:e1002394.PubMedPubMedCentralGoogle Scholar
  23. David LA, Materna AC, Friedman J, Campos-Baptista MI, Blackburn MC, Perrotta A, Erdman SE, Alm EJ. Host lifestyle affects human microbiota on daily timescales. Genome Biol. 2014;15:R89.PubMedPubMedCentralGoogle Scholar
  24. della Torre A, Tu Z, Petrarca V. On the distribution and genetic differentiation of Anopheles gambiae s.s. molecular forms. Insect Biochem Mol Biol. 2005;35:755–69.PubMedGoogle Scholar
  25. Denef VJ. Peering into the genetic makeup of natural microbial populations using metagenomics. In: Population genomics. Cham: Springer; 2018. Scholar
  26. Denef VJ, Mueller RS, Banfield JF. AMD biofilms: using model communities to study microbial evolution and ecological complexity in nature. ISME J. 2010;4:599–610.PubMedGoogle Scholar
  27. Didelot X. Computational methods in microbial population genomics. In: Population genomics. Cham: Springer; 2017. Scholar
  28. Didelot X, Lawson D, Darling A, Falush D. Inference of homologous recombination in bacteria using whole-genome sequences. Genetics. 2010;186:1435–49.PubMedPubMedCentralGoogle Scholar
  29. Doolittle WF, Papke RT. Genomics and the bacterial species problem. Genome Biol. 2006;7:116.PubMedPubMedCentralGoogle Scholar
  30. Doolittle WF, Zhaxybayeva O. On the origin of prokaryotic species. Genome Res. 2009;19:744–56.PubMedGoogle Scholar
  31. Dutilh BE, Thompson CC, Vicente AC, Marin MA, Lee C, Silva GG, Schmieder R, Andrade BG, Chimetto L, Cuevas D, et al. Comparative genomics of 274 Vibrio cholerae genomes reveals mobile functions structuring three niche dimensions. BMC Genomics. 2014;15:654.PubMedPubMedCentralGoogle Scholar
  32. Ellison CE, Hall C, Kowbel D, Welch J, Brem RB, Glass NL, Taylor JW. Population genomics and local adaptation in wild isolates of a model microbial eukaryote. Proc Natl Acad Sci. 2011;108:2831–6.PubMedGoogle Scholar
  33. Falush D, Bowden R. Genome-wide association mapping in bacteria? Trends Microbiol. 2006;14:353–5.PubMedGoogle Scholar
  34. Fraser C, Hanage WP, Spratt BG. Recombination and the nature of bacterial speciation. Science. 2007;315:476–80.PubMedPubMedCentralGoogle Scholar
  35. Fraser C, Alm EJ, Polz MF, Spratt BG, Hanage WP. The bacterial species challenge: making sense of genetic and ecological diversity. Science. 2009;232:741–6.Google Scholar
  36. Friedman J, Alm EJ, Shapiro BJ. Sympatric speciation: when is it possible in bacteria? PLoS One. 2013;8:e53539.PubMedPubMedCentralGoogle Scholar
  37. Gevers D, Cohan FM, Lawrence JG, Spratt BG, Coenye T, Feil EJ, Stackebrandt E, de Peer YV, Vandamme P, Thompson FL, et al. Re-evaluating prokaryotic species. Nat Rev Microbiol. 2005;3:733–9.PubMedGoogle Scholar
  38. Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet. 2016;17:333–51.Google Scholar
  39. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol. 2007;57:81–91.PubMedGoogle Scholar
  40. Haegeman B, Weitz JS. A neutral theory of genome evolution and the frequency distribution of genes. BMC Genomics. 2012;13:196.PubMedPubMedCentralGoogle Scholar
  41. Hahn MW, Pockl M. Ecotypes of planktonic actinobacteria with identical 16S rRNA genes adapted to thermal niches in temperate, subtropical, and tropical freshwater habitats. Appl Environ Microbiol. 2005;71:766–73.PubMedPubMedCentralGoogle Scholar
  42. Hanage WP, Fraser C, Spratt BG. Fuzzy species among recombinogenic bacteria. BMC Biol. 2005;3:6. Scholar
  43. Hehemann JH, Arevalo P, Datta MS, Yu X, Corzett CH, Henschel A, Preheim SP, Timberlake S, Alm EJ, Polz MF. Adaptive radiation by waves of gene transfer leads to fine-scale resource partitioning in marine microbes. Nat Commun. 2016;7:12860.PubMedPubMedCentralGoogle Scholar
  44. Hughes-Martiny JB, Bohannan BJM, Brown JH, Colwell RK, Fuhrman JA, Green JL, Horner-Divine MC, Kane M, Krumins JA, Kuske CR, et al. Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol. 2006;4:102–12.Google Scholar
  45. Hunt DE, David LD, Gevers D, Preheim SP, Alm EJ, Polz MF. Resource partitioning and sympatric differentiation among closely related bacterioplankton. Science. 2008;320:1081–5.PubMedGoogle Scholar
  46. Jaspers E, Overmann J. Ecological significance of microdiversity: identical 16S rRNA gene sequences can be found in bacteria with highly divergent genomes and ecophysiologies. Appl Environ Microbiol. 2004;70:4831–9.PubMedPubMedCentralGoogle Scholar
  47. Jax K. Ecological units: definitions and application. Q Rev Biol. 2006;81:237–58.PubMedGoogle Scholar
  48. Kashtan N, Roggensack SE, Rodrigue S, Thompson JW, Biller SJ, Coe A, Ding H, Marttinen P, Malmstrom RR, Stocker R, et al. Single-cell genomics reveals hundreds of coexisting subpopulations in wild Prochlorococcus. Science. 2014;344:416–20.PubMedGoogle Scholar
  49. Kashtan N, Roggensack SE, Berta-Thompson JW, Grinberg M, Stepanauskas R, Chisholm SW. Fundamental differences in diversity and genomic population structure between Atlantic and Pacific Prochlorococcus. ISME J. 2017;11:1997–2011.PubMedPubMedCentralGoogle Scholar
  50. Keswani J, Whitman WB. Relationship of 16S rRNA sequence similarity to DNA hybridization in prokaryotes. Int J Syst Evol Microbiol. 2001;51:667–78.PubMedGoogle Scholar
  51. Knight R, Jansson J, Field D, Fierer N, Desai N, Fuhrman JA, Hugenholtz P, van der Lelie D, Meyer F, Stevens R, et al. Unlocking the potential of metagenomics through replicated experimental design. Nat Biotechnol. 2012;30:513–20.PubMedPubMedCentralGoogle Scholar
  52. Koeppel AF, Wu M. Surprisingly extensive mixed phylogenetic and ecological signals among bacterial Operational Taxonomic Units. Nucleic Acids Res. 2013;41:5175–88.PubMedPubMedCentralGoogle Scholar
  53. Koeppel A, Perry EB, Sikorski J, Krizanc D, Warner A, Ward DM, Rooney AP, Brambilla E, Connor N, Ratcliff RM, et al. Identifying the fundamental units of bacterial diversity: a paradigm shift to incorporate ecology into bacterial systematics. Proc Natl Acad Sci U S A. 2008;105:2504–9.PubMedPubMedCentralGoogle Scholar
  54. Konstantinidis KT, DeLong EF. Genomic patterns of recombination, clonal divergence and environment in marine microbial populations. ISME J. 2008;10:1052–65.Google Scholar
  55. Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci U S A. 2005;102:2567–72.PubMedPubMedCentralGoogle Scholar
  56. Konstantinidis KT, Ramette A, Tiedje JM. The bacterial species definition in the genomics area. Philos Trans R Soc Lond Ser B Biol Sci. 2006;361:1929–40.Google Scholar
  57. Lawniczak MKN, Emrich SJ, Holloway AK, Regier AP, Olson M, White B, Redmond S, Fulton L, Appelbaum E, Godfrey J, et al. Widespread divergence between incipient Anopheles gambiae species revealed by whole genome sequences. Science. 2010;330:512–4.PubMedPubMedCentralGoogle Scholar
  58. Lee IM, Gundersen-Rindal DE, Davis RE, Bartoszyk IM. Revised classification scheme of phytoplasmas based on RFLP analyses of 16S rRNA and ribosomal protein gene sequences. Int J Syst Bacteriol. 1998;48:1153–69.Google Scholar
  59. Levy R, Borenstein E. Reverse ecology: from systems to environments and back. Adv Exp Med Biol. 2012;751:329–45.PubMedGoogle Scholar
  60. Li QL, Yi SC, Li DZ, Nie XP, Li SQ, Wang MQ, Zhou AM. Optimization of reverse chemical ecology method: false positive binding of Aenasius bambawalei odorant binding protein 1 caused by uncertain binding mechanism. Insect Mol Biol. 2018;27:305–18.PubMedGoogle Scholar
  61. Luo CW, Walk ST, Gordon DM, Feldgarden M, Tiedje JM, Konstantinidis KT. Genome sequencing of environmental Escherichia coli expands understanding of the ecology and speciation of the model bacterial species. Proc Natl Acad Sci U S A. 2011;108:7200–5.PubMedPubMedCentralGoogle Scholar
  62. Majewski J. Sexual isolation in bacteria. FEMS Microbiol Lett. 2001;199:161–9.PubMedGoogle Scholar
  63. Martin-Platero AM, Cleary B, Kauffman K, Preheim SP, McGillicuddy DJ, Alm EJ, Polz MF. High resolution time series reveals cohesive but short-lived communities in coastal plankton. Nat Commun. 2018;9:266.PubMedPubMedCentralGoogle Scholar
  64. Marttinen P, Hanage WP. Speciation trajectories in recombining bacterial species. PLoS Comput Biol. 2017;13:e1005640.PubMedPubMedCentralGoogle Scholar
  65. Marttinen P, Hanage WP, Croucher NJ, Connor TR, Harris SR, Bentley SD, Corander J. Detection of recombination events in bacterial genomes from large population samples. Nucleic Acids Res. 2012;40:e6.PubMedGoogle Scholar
  66. Mayr E. Systematics and the origin of species. New York: Columbia University Press; 1942.Google Scholar
  67. Nemergut DR, Costello EK, Hamady M, Lozupone C, Jiang L, Schmidt SK, Fierer N, Townsend AR, Cleveland CC, Stanish L, et al. Global patterns in the biogeography of bacterial taxa. Environ Microbiol. 2011;13:135–44.PubMedPubMedCentralGoogle Scholar
  68. Niehus R, Mitri S, Fletcher AG, Foster KR. Migration and horizontal gene transfer divide microbial genomes into multiple niches. Nat Commun. 2015;6:8924.PubMedPubMedCentralGoogle Scholar
  69. Oh S, Caro-Quintero A, Tsementzi D, DeLeon-Rodriguez N, Luo C, Poretsky R, Konstantinidis KT. Metagenomic insights into the evolution, function, and complexity of the planktonic microbial community of Lake Lanier, a temperate freshwater ecosystem. Appl Environ Microbiol. 2011;77:6000–11.PubMedPubMedCentralGoogle Scholar
  70. Papke RT, Zhaxybayeva O, Feil EJ, Sommerfeld K, Muise D, Doolittle WF. Searching for species in haloarchaea. Proc Natl Acad Sci U S A. 2007;104:14092–7.PubMedPubMedCentralGoogle Scholar
  71. Polz MF, Hunt DE, Preheim SP, Weinreich DM. Patterns and mechanisms of genetic and phenotypic differentiation in marine microbes. Philos Trans R Soc Lond B. 2006;361:2009–21.Google Scholar
  72. Polz MF, Alm EJ, Hanage WP. Horizontal gene transfer and the evolution of bacterial and archaeal population structure. Trends Genet. 2013;29:170–5.PubMedPubMedCentralGoogle Scholar
  73. Rocha EPC. Neutral theory, microbial practice: challenges in bacterial population genetics. Mol Biol Evol. 2018;35:1338–47.PubMedGoogle Scholar
  74. Rodriguez-Valera F, Martin-Cuadrado AB, Rodriguez-Brito B, Pasic L, Thingstad TF, Rohwer F, Mira A. Explaining microbial population genomics through phage predation. Nat Rev Microbiol. 2009;7:828–36.PubMedGoogle Scholar
  75. Ropars J, Rodríguez de la Vega RC, López-Villavicencio M, Gouzy J, Sallet E, Dumas É, Lacoste S, Debuchy R, Dupont J, Branca A, et al. Adaptive horizontal gene transfers between multiple cheese-associated fungi. Curr Biol. 2015;25:2562–9.PubMedPubMedCentralGoogle Scholar
  76. Ropars J, López-Villavicencio M, Snirc A, Lacoste S, Giraud T. Blue cheese-making has shaped the population genetic structure of the mould Penicillium roqueforti. PLoS One. 2017;12:e0171387.PubMedPubMedCentralGoogle Scholar
  77. Rosen MJ, Davison M, Bhaya D, Fisher DS. Microbial diversity. Fine-scale diversity and extensive recombination in a quasisexual bacterial population occupying a broad niche. Science. 2015;348:1019–23.PubMedGoogle Scholar
  78. Rosselló-Mora R, Amann R. The species concept for prokaryotes. FEMS Microbiol Rev. 2001;25:39–67.PubMedGoogle Scholar
  79. Shapiro BJ. Signatures of natural selection and ecological differentiation in microbial genomes. Adv Exp Med Biol. 2014;781:339–59.PubMedGoogle Scholar
  80. Shapiro BJ. What microbial population genomics has taught us about speciation. In: Population genomics. Cham: Springer; 2018. Scholar
  81. Shapiro BJ, Polz MF. Ordering microbial diversity into ecologically and genetically cohesive units. Trends Microbiol. 2014;22:235–47.PubMedPubMedCentralGoogle Scholar
  82. Shapiro BJ, David LA, Friedman J, Alm EJ. Looking for Darwin’s footprints in the microbial world. Trends Microbiol. 2009;17:196–204.PubMedGoogle Scholar
  83. Shapiro BJ, Friedman J, Cordero OX, Preheim SP, Timberlake SC, Szabo G, Polz MF, Alm EJ. Population genomics of early events in the ecological differentiation of bacteria. Science. 2012;336:48–51.PubMedPubMedCentralGoogle Scholar
  84. Sheppard SK, Didelot X, Meric G, Torralbo A, Jolley KA, Kelly DJ, Bentley SD, Maiden MC, Parkhill J, Falush D. Genome-wide association study identifies vitamin B5 biosynthesis as a host specificity factor in Campylobacter. Proc Natl Acad Sci U S A. 2013;110:11923–7.PubMedPubMedCentralGoogle Scholar
  85. Smillie CS, Smith MB, Friedman J, Cordero OX, David LA, Alm EJ. Ecology drives a global network of gene exchange connecting the human microbiome. Nature. 2011;480:241–4.PubMedGoogle Scholar
  86. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation kinetics and sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol. 1994;44:846–9.Google Scholar
  87. Syvanen M. Evolutionary implications of horizontal gene transfer. Annu Rev Genet. 2012;46:341–58.PubMedGoogle Scholar
  88. Thompson JR, Pacocha S, Pharino C, Klepac-Ceraj V, Hunt DE, Benoit J, Sarma-Rupavtarm R, Distel DL, Polz MF. Genotypic diversity within a natural coastal bacterioplankton population. Science. 2005;307:1311–3.PubMedGoogle Scholar
  89. Thompson CC, Amaral GR, Campeao M, Edwards RA, Polz MF, Dutilh BE, Ussery DW, Sawabe T, Swings J, Thompson FL. Microbial taxonomy in the post-genomic era: rebuilding from scratch? Arch Microbiol. 2015;197:359–70.PubMedGoogle Scholar
  90. Toro N, Villadas PJ, Molina-Sanchez MD, Navarro-Gomez P, Vinardell JM, Cuesta-Berrio L, Rodriguez-Carvajal MA. The underlying process of early ecological and genetic differentiation in a facultative mutualistic Sinorhizobium meliloti population. Sci Rep. 2017;7:675.PubMedPubMedCentralGoogle Scholar
  91. Vandamme P, Pot B, Gillis M, De Vos P, Kersters K, Swings J. Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev. 1996;60:407–38.PubMedPubMedCentralGoogle Scholar
  92. Varghese NJ, Mukherjee S, Ivanova N, Konstantinidis KT, Mavrommatis K, Kyrpides NC, Pati A. Microbial species delineation using whole genome sequences. Nucleic Acids Res. 2015;43:6761–71.PubMedPubMedCentralGoogle Scholar
  93. Vos M. A species concept for bacteria based on adaptive divergence. Trends Microbiol. 2011;19:1–7.PubMedGoogle Scholar
  94. Vos M, Didelot X. A comparison of homologous recombination rates in bacteria and archaea. ISME J. 2009;3:199–208.PubMedGoogle Scholar
  95. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, et al. Report of the Ad Hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol. 1987;37:463–4.Google Scholar
  96. Welch RA, Burland V, Plunkett G III, Redford P, Roesch P, Rasko D, Buckles EL, Liou S-R, Boutin A, Hackett J, et al. Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc Natl Acad Sci U S A. 2002;99:17020–4.PubMedPubMedCentralGoogle Scholar
  97. Whitaker RJ. Allopatric origins of microbial species. Philos Trans R Soc Lond Ser B Biol Sci. 2006;361:1975–84.Google Scholar
  98. Whitaker RJ, Banfield JF. Population genomics in natural microbial communities. Trends Ecol Evol. 2006;21:508–16.PubMedGoogle Scholar
  99. Whitaker RJ, Grogan DW, Taylor JW. Recombination shapes the natural population structure of the hyperthermophilic archaeon Sulfolobus islandicus. Mol Biol Evol. 2005;22:2354–61.PubMedGoogle Scholar
  100. Wiedenbeck J, Cohan FM. Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches. FEMS Microbiol Rev. 2011;35:957–76.PubMedGoogle Scholar
  101. Yahara K, Meric G, Taylor AJ, de Vries SP, Murray S, Pascoe B, Mageiros L, Torralbo A, Vidal A, Ridley A, et al. Genome-wide association of functional traits linked with Campylobacter jejuni survival from farm to fork. Environ Microbiol. 2017;19:361–80.PubMedGoogle Scholar
  102. Yawata Y, Cordero OX, Menolascina F, Hehemann JH, Polz MF, Stocker R. Competition-dispersal tradeoff ecologically differentiates recently speciated marine bacterioplankton populations. Proc Natl Acad Sci U S A. 2014;111:5622–7.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Philip Arevalo
    • 1
  • David VanInsberghe
    • 1
  • Martin F. Polz
    • 1
    Email author
  1. 1.Department of Civil and Environmental EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations