Advertisement

Advancing Biogeography Through Population Genomics

  • Jeremy S. JohnsonEmail author
  • Konstantin V. Krutovsky
  • Om P. Rajora
  • Keith D. Gaddis
  • David M. Cairns
Chapter
Part of the Population Genomics book series (POGE)

Abstract

Biogeography is a multifaceted field that integrates geography, geology, ecology, and biology to investigate both historical and ecological questions of how spatial and temporal patterns of varying environmental factors impact the distribution of species and their evolutionary history. Genomes contain imprints of these impacts and, when such genomic imprints are rightly deciphered and interpreted, can help us address these questions. In the past 10 years, incredible advances have been made with respect to acquiring and deciphering genome sequences. The advances in genomics and bioinformatics and the decreasing costs of nucleotide sequencing have reduced many of the barriers to using genomics in biogeography. Here, we introduce some of the strategies and approaches from population genomics that can be integrated into biogeography research. First, we introduce the field of biogeography and define the two well-established broad subdisciplines of ecological and historical biogeography along with the traditional methods that they use. Next, we present examples of how population genomics approaches can be used to address biogeographic questions. To illustrate how both ecological and historical biogeography can benefit from adopting a population genomics approach, we outline our own research on mountain hemlock as a case study. We also briefly discuss the application of biogeography in biological conservation. We conclude the chapter by discussing some of the remaining challenges and future research avenues that become possible by integrating population genomics into biogeography research.

Keywords

Biogeography Dendrogenomics Ecological biogeography Historical biogeography Next-generation sequencing Paleogenomics Phylogenomics Reduced representation genomics SNPs Species distribution modeling 

Notes

Acknowledgments

JSJ received support from a National Science Foundation Grant [BCS-1333527]. We would like to thank Aaron Shafer for constructive feedback on an earlier version of this chapter.

References

  1. Ager TA. Vegetation response to climate change in Alaska: examples from the fossil record. Vol Open-file report 2007–1096. US Geological Survey. 2007.Google Scholar
  2. Alberto FJ, Aitken SN, Alía R, González-Martínez SC, Hänninen H, Kremer A, et al. Potential for evolutionary responses to climate change – evidence from tree populations. Glob Chang Biol. 2013;19(6):1645–61.  https://doi.org/10.1111/gcb.12181.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Alftine KJ, Malanson GP. Directional positive feedback and pattern at an alpine tree line. J Veg Sci. 2004;15:3–12.Google Scholar
  4. Allendorf FW, Hohenlohe PA, Luikart G. Genomics and the future of conservation genetics. Nat Rev Genet. 2010;11(10):697–709.  https://doi.org/10.1038/nrg2844.CrossRefPubMedGoogle Scholar
  5. Allendorf FW, Luikart GH, Aitken SN. Conservation and the genetics of populatins. 2nd ed. Chichester: Wiley; 2012.Google Scholar
  6. Ally D, Ritland K. A case study: looking at the effects of fragmentation on genetic structure in different life history stages of old-growth mountain hemlock (Tsuga mertensiana). J Hered. 2007;98(1):73–8.  https://doi.org/10.1093/jhered/esl048.CrossRefPubMedGoogle Scholar
  7. Ally D, El-Kassaby YA, Ritland K. Genetic diversity, differentiation and mating system in mountain hemlock (Tsuga mertensiana) across British Columbia. For Genet. 2000;7:97–108.Google Scholar
  8. Alsos IG, Sjögren P, Edwards ME, Landvik JY, Gielly L, Forwick M, et al. Sedimentary ancient DNA from Lake Skartjørna, Svalbard: assessing the resilience of arctic flora to Holocene climate change. The Holocene. 2015;26(4):627–42.  https://doi.org/10.1177/0959683615612563.CrossRefGoogle Scholar
  9. Alvarado-Serrano DF, Knowles LL. Ecological niche models in phylogeographic studies: applications, advances and precautions. Mol Ecol Resour. 2014;14(2):233–48.  https://doi.org/10.1111/1755-0998.12184.CrossRefPubMedGoogle Scholar
  10. Ammann B, van Leeuwen JFN, van der Knaap WO, Lischke H, Heiri O, Tinner W. Vegetation responses to rapid warming and to minor climatic fluctuations during the Late-Glacial Interstadial (GI-1) at Gerzensee (Switzerland). Palaeogeogr Palaeoclimatol Palaeoecol. 2013;391:40–59.  https://doi.org/10.1016/j.palaeo.2012.07.010.CrossRefGoogle Scholar
  11. Andrewartha HG, Birch LC. The distribution and abundance of animals. Chicago: University of Chicago Press; 1954.Google Scholar
  12. Araújo MB, Whittaker RJ, Ladle RJ, Erhard M. Reducing uncertainty in projections of extinction risk from climate change. Glob Ecol Biogeogr. 2005;14(6):529–38.  https://doi.org/10.1111/j.1466-822X.2005.00182.x.CrossRefGoogle Scholar
  13. Ashman T-L, Knight TM, Steets JA, Amarasekare P, Burd M, Campbell DR, et al. Pollen limitation of plant reproduction: ecological and evolutionary causes and consequences. Ecology. 2004;85(9):2408–21.  https://doi.org/10.1890/03-8024.CrossRefGoogle Scholar
  14. Auffret AG, Rico Y, Bullock JM, Hooftman DAP, Pakeman RJ, Soons MB, et al. Plant functional connectivity – integrating landscape structure and effective dispersal. J Ecol. 2017;105:1648–56.  https://doi.org/10.1111/1365-2745.12742.CrossRefGoogle Scholar
  15. Avise JC. Phylogeography: the history and formation of species. Cambridge: Harvard University Press; 2000.Google Scholar
  16. Avise JC. Phylogeography: retrospect and prospect. J Biogeogr. 2009;36(1):3–15.  https://doi.org/10.1111/j.1365-2699.2008.02032.x.CrossRefGoogle Scholar
  17. Avise JC. Perspective: conservation genetics enters the genomics era. Conserv Genet. 2010;11:665–9.Google Scholar
  18. Avise JC, Arnold J, Ball RM, Bermingahm E, Lamb T, Neigel JE, et al. Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annu Rev Ecol Syst. 1987;18:489–522.Google Scholar
  19. Babushkina EA, Vaganov EA, Grachev AM, Oreshkova NV, Belokopytova LV, Kostyakova TV, et al. The effect of individual genetic heterozygosity on general homeostasis, heterosis and resilience in Siberian larch (Larix sibirica Ledeb.) using dendrochronology and microsatellite loci genotyping. Dendrochronologia. 2016;38:26–37.  https://doi.org/10.1016/j.dendro.2016.02.005.CrossRefGoogle Scholar
  20. Baerwald TJ. Prospects for geography as an interdisciplinary discipline. Ann Assoc Am Geogr. 2010;100:493–501.Google Scholar
  21. Balkenhol N, Dudaniec RY, Krutovsky KV, Johnson JS, Cairns DM, Segelbacher G, et al. Landscape genomics: understanding relationships between environmental heterogeneity and genomic characteristics of populations. In: Rajora OP, editor. Population genomics concepts, strategies and approaches. Cham: Springer; 2017.Google Scholar
  22. Baraniuk RG. More is less: signal processing and the data deluge. Science. 2011;331:717–9.PubMedGoogle Scholar
  23. Barker BS, Andonian K, Swope SM, Luster DG, Dlugosch KM. Population genomic analyses reveal a history of range expansion and trait evolution across the native and invaded range of yellow starthistle (Centaurea solstitialis). Mol Ecol. 2016;26(4):1131–47.  https://doi.org/10.1111/mec.13998.CrossRefGoogle Scholar
  24. Benestan LM, Ferchaud AL, Hohenlohe PA, Garner BA, Naylor GJP, Baums IB, et al. Conservation genomics of natural and managed populations: building a conceptual and practical framework. Mol Ecol. 2016;25(13):2967–77.  https://doi.org/10.1111/mec.13647.CrossRefPubMedGoogle Scholar
  25. Birks HJB, Birks HH. How have studies of ancient DNA from sediments contributed to the reconstruction of quaternary floras? New Phytol. 2015;209(2):499–506.  https://doi.org/10.1111/nph.13657.CrossRefPubMedGoogle Scholar
  26. Birnbaum D, Coulier F, Pébusque MJ, Pontarotti P. “Paleogenomics”: looking in the past to the future. J Exp Zool. 2000;288(1):21–2.  https://doi.org/10.1002/(sici)1097-010x(20000415)288:1<21::aid-jez2>3.0.co;2-q.CrossRefPubMedGoogle Scholar
  27. Blumler MA, Cole A, Flenley J, Schickhoff U. History of biogeographical thought. In: Millington AC, Blumler MA, Schickhoff U, editors. The Sage handbook of biogeography. Los Angeles: SAGE; 2011.Google Scholar
  28. Boessenkool S, McGlynn G, Epp LS, Taylor D, Pimentel M, Gizaw A, et al. Use of ancient sedimentary DNA as a novel conservation tool for high-altitude tropical biodiversity. Conserv Biol. 2014;28(2):446–55.  https://doi.org/10.1111/cobi.12195.CrossRefPubMedGoogle Scholar
  29. Bond WJ, Keeley JE. Fire as a global ‘herbivore’: the ecology and evolution of flammable ecosystems. Trends Ecol Evol. 2005;20(7):387–94.  https://doi.org/10.1016/j.tree.2005.04.025.CrossRefPubMedGoogle Scholar
  30. Bothwell HM, Cushman SA, Woolbright SA, Hersch-Green Erika I, Evans LM, Whitham TG, et al. Conserving threatened riparian ecosystems in the American west: precipitation gradients and river networks drive genetic connectivity and diversity in a foundation riparian tree (Populus angustifolia). Mol Ecol. 2017;26(19):5114–32.  https://doi.org/10.1111/mec.14281.CrossRefPubMedGoogle Scholar
  31. Bruening JM, Bunn AG, Salzer MW. A climate-driven tree line position model in the White Mountains of California over the past six millennia. J Biogeogr. 2018;45:1067–76.  https://doi.org/10.1111/jbi.13191.CrossRefGoogle Scholar
  32. Buffon GLL. Histoire Naturelle, Général et Particuliére. Paris: Imprimerie Nationale; 1791.Google Scholar
  33. Bullock JM, Moy IL. Plants as seed traps: inter-specific interference with dispersal. Acta Oecol. 2004;25(1):35–41.  https://doi.org/10.1016/j.actao.2003.10.005.CrossRefGoogle Scholar
  34. Bullock JM, González LM, Tamme R, Götzenberger L, White SM, Pärtel M, et al. A synthesis of empirical plant dispersal kernels. J Ecol. 2017;105(1):6–19.  https://doi.org/10.1111/1365-2745.12666.CrossRefGoogle Scholar
  35. Cain ML, Milligan BG, Strand AE. Long-distance seed dispersal in plant populations. Am J Bot. 2000;87(9):1217–27.PubMedGoogle Scholar
  36. Cairns DM, Lafon CW, Waldron JD, Tchakerian M, Coulson RN, Klepzig KD, et al. Simulating the reciprocal interaction of forest landscape structure and southern pine beetle herbivory using LANDIS. Landsc Ecol. 2008;23(4):403–15.  https://doi.org/10.1007/s10980-008-9198-7.CrossRefGoogle Scholar
  37. Ćalić I, Bussotti F, Martínez-García PJ, Neale DB. Recent landscape genomics studies in forest trees—what can we believe? Tree Genet Genomes. 2015;12(1):1–7.  https://doi.org/10.1007/s11295-015-0960-0.CrossRefGoogle Scholar
  38. Candolle APD. Essai elementaire de géographie botanique. Dictionnaire des sciences naturelles, vol. 18. Paris: Levrault; 1820.Google Scholar
  39. Chhetri PK, Cairns DM. Dendroclimatic response of Abies spectabilis at treeline ecotone of Barun Valley, eastern Nepal Himalaya. J For Res. 2016;27(5):1163–70.  https://doi.org/10.1007/s11676-016-0249-7.CrossRefGoogle Scholar
  40. Chhetri PK, Shrestha KB, Cairns DM. Topography and human disturbances are major controlling factors in treeline pattern at Barun and Manang area in the Nepal Himalaya. J Mt Sci. 2017;14(1):119–27.  https://doi.org/10.1007/s11629-016-4198-6.CrossRefGoogle Scholar
  41. Christe C, Stolting KN, Bresadola L, Fussi B, Heinze B, Wegmann D, et al. Selection against recombinant hybrids maintains reproductive isolation in hybridizing Populus species despite F1 fertility and recurrent gene flow. Mol Ecol. 2016;25:2482–98.PubMedGoogle Scholar
  42. Christe C, Stölting KN, Paris M, Fraїsse C, Bierne N, Lexer C. Adaptive evolution and segregating load contribute to the genomic landscape of divergence in two tree species connected by episodic gene flow. Mol Ecol. 2017;26(1):59–76.  https://doi.org/10.1111/mec.13765.CrossRefPubMedGoogle Scholar
  43. Clark JS. Why trees migrate so fast: confronting theory with dispersal biology and the paleorecord. Am Nat. 1998;152(2):204–24.  https://doi.org/10.1086/286162.CrossRefPubMedGoogle Scholar
  44. Clark JS, Fastie C, Hurtt G, Jackson ST. Reid’s paradox of rapid plant migration. Bioscience. 1998;48:13–24.Google Scholar
  45. Connell JH. The influence of interspecific competition and other factors on the distribution of the barnacle Chthamalus stellatus. Ecology. 1961;42(4):710–23.  https://doi.org/10.2307/1933500.CrossRefGoogle Scholar
  46. Cowell CM, Parker AJ. Biogeography in the annals. Ann Assoc Am Geogr. 2004;94(2):256–68.  https://doi.org/10.1111/j.1467-8306.2004.09402002.x.CrossRefGoogle Scholar
  47. Cox CB, Moore PD, Ladle R. Biogeography an ecological and evolutionary approach. 9th ed. Hoboken: Wiley; 2016.Google Scholar
  48. Cushman SA, McRae BH, McGarigal K. Basics of landscape ecology: an introduction to landscapes and population processes for landscape geneticists. In: Balkenhol N, Cushman Samuel A, Storfer AT, Waits LP, editors. Landscape genetics: concepts, methods, applications. West Sussex: Wiley; 2016.  https://doi.org/10.1002/9781118525258.ch02.CrossRefGoogle Scholar
  49. Danby RK, Hik DS. Variability, contingency and rapid change in recent subarctic alpine tree line dynamics. J Ecol. 2007;95(2):352–63.  https://doi.org/10.1111/j.1365-2745.2006.01200.x.CrossRefGoogle Scholar
  50. Davis MB. Quaternary history and the stability of forest communities. In: West DC, Shugart HH, Botkin DB, editors. Forest succession, Springer advanced texts in life sciences. New York: Springer; 1981. p. 132–53.  https://doi.org/10.1007/978-1-4612-5950-3_10.CrossRefGoogle Scholar
  51. Degen B, Bandou E, Caron H. Limited pollen dispersal and biparental inbreeding in Symphonia globulifera in French Guiana. Heredity. 2004;93:585–91.PubMedGoogle Scholar
  52. Delcourt PA, Delcourt HR. Vegetation maps for eastern North America: 40,000 Yr BP to the present. In: Romans R, editor. Geobotany II. New York: Plenum; 1981. p. 123–66.Google Scholar
  53. Delcourt HR, Delcourt PA, Webb T III. Dynamic plant ecology: the spectrum of vegetational change in space and time. Quat Sci Rev. 1982;1(3):153–75.Google Scholar
  54. Deng M, Jiang X-L, Hipp AL, Manos PS, Hahn M. Phylogeny and biogeography of east Asian evergreen oaks (Quercus section Cyclobalanopsis; Fagaceae): insights into the Cenozoic history of evergreen broad-leaved forests in subtropical Asia. Mol Phylogenet Evol. 2018;119:170–81.  https://doi.org/10.1016/j.ympev.2017.11.003.CrossRefPubMedGoogle Scholar
  55. Despres L, Loriot S, Gaudeul M. Geographic pattern of genetic variation in the European globeflower Trollius europaeus L. (Ranunculaceae) inferred from amplified fragment length polymorphism markers. Mol Ecol. 2002;11(11):2337–47.  https://doi.org/10.1046/j.1365-294X.2002.01618.x.CrossRefPubMedGoogle Scholar
  56. Diamond JM. Colonization of exploded volcanic islands by birds: the supertramp strategy. Science. 1974;184(4138):803–6.PubMedGoogle Scholar
  57. Diamond JM. The island dilemma: lessons of modern biogeographic studies for the design of natural reserves. Biol Conserv. 1975;7(2):129–46.  https://doi.org/10.1016/0006-3207(75)90052-X.CrossRefGoogle Scholar
  58. Dietz R. Continent and ocean basin evolution by spreading of the sea floor. Nature. 1961;190:854–7.Google Scholar
  59. Dow BD, Ashley MV. Microsatellite analysis of seed dispersal and parentage of saplings in bur oak, Quercus macrocarpa. Mol Ecol. 1996;5(5):615–27.  https://doi.org/10.1111/j.1365-294X.1996.tb00357.x.CrossRefGoogle Scholar
  60. Dyer RJ. The evolution of genetic topologies. Theor Popul Biol. 2007;71:71–9.PubMedGoogle Scholar
  61. Dyer RJ. Population graphs and landscape genetics. Annu Rev Ecol Evol Syst. 2015;46(1):327–42.  https://doi.org/10.1146/annurev-ecolsys-112414-054150.CrossRefGoogle Scholar
  62. Dyer RJ, Nason JD. Population graphs: the graph theoretic shape of genetic structure. Mol Ecol. 2004;13(7):1713–27.PubMedGoogle Scholar
  63. Dyer R, Chan D, Gardiakos V, Meadows C. Pollination graphs: quantifying pollen pool covariance networks and the influence of intervening landscape on genetic connectivity in the north American understory tree, Cornus florida L. Landsc Ecol. 2012;27(2):239–51.  https://doi.org/10.1007/s10980-011-9696-x.CrossRefGoogle Scholar
  64. Elliott G. The role of thresholds and fine-scale processes in driving upper treeline dynamics in the Bighorn Mountains, Wyoming. Phys Geogr. 2012;33(2):129–45.  https://doi.org/10.2747/0272-3646.33.2.129.CrossRefGoogle Scholar
  65. Emerson KJ, Clayton RM, Catchen JM, Hohenlohe PA, Cresko WA, Bradshaw WE, et al. Resolving postglacial phylogeography using high-throughput sequencing. Proc Natl Acad Sci. 2010;107(37):16196–200.  https://doi.org/10.2307/20779639.CrossRefPubMedGoogle Scholar
  66. Endler JA. Geographic variation, speciation, and clines. Princeton: Princeton University Press; 1977.Google Scholar
  67. Epp LS, Gussarova G, Boessenkool S, Olsen J, Haile J, Schrøder-Nielsen A, et al. Lake sediment multi-taxon DNA from North Greenland records early post-glacial appearance of vascular plants and accurately tracks environmental changes. Quat Sci Rev. 2015;117:152–63.  https://doi.org/10.1016/j.quascirev.2015.03.027.CrossRefGoogle Scholar
  68. Etterson JR, Schneider HE, Gorden NLS, Weber JJ. Evolutionary insights from studies of geographic variation: contemporary variation and looking to the future. Am J Bot. 2016;103(1):5–9.  https://doi.org/10.3732/ajb.1500515.CrossRefPubMedGoogle Scholar
  69. Evans MEK, Gugger PF, Lynch AM, Guiterman CH, Fowler JC, Klesse S, et al. Dendroecology meets genomics in the common garden: new insights into climate adaptation. New Phytol. 2018;218(2):401–3.  https://doi.org/10.1111/nph.15094.CrossRefPubMedGoogle Scholar
  70. Faircloth BC, McCormack JE, Crawford NG, Harvey MG, Brumfield RT, Glenn TC. Ultraconserved elements anchor thousands of genetic markers spanning multiple evolutionary timescales. Syst Biol. 2012;61:717–26.  https://doi.org/10.1093/sysbio/sys004.CrossRefPubMedGoogle Scholar
  71. Ferrarini A, Selvaggi A, Abeli T, Alatalo JM, Orsenigo S, Gentili R, et al. Planning for assisted colonization of plants in a warming world. Sci Rep. 2016;6:28542.  https://doi.org/10.1038/srep28542. https://www.nature.com/articles/srep28542#supplementary-information CrossRefPubMedPubMedCentralGoogle Scholar
  72. Fitz-Gibbon S, Hipp AL, Pham KK, Manos PS, Sork VL. Phylogenomic inferences from reference-mapped and de novo assembled short-read sequence data using RADseq sequencing of California white oaks (Quercus section Quercus). Genome. 2017;60(9):743–55.  https://doi.org/10.1139/gen-2016-0202.CrossRefPubMedGoogle Scholar
  73. Fitzpatrick MC, Keller SR. Ecological genomics meets community-level modelling of biodiversity: mapping the genomic landscape of current and future environmental adaptation. Ecol Lett. 2015;18(1):1–16.  https://doi.org/10.1111/ele.12376.CrossRefPubMedGoogle Scholar
  74. Flatley WT, Lafon CW, Grissino-Mayer HD, LaForest LB. Changing fire regimes and old-growth forest succession along a topographic gradient in the great Smoky Mountains. For Ecol Manag. 2015;350(Supplement C):96–106.  https://doi.org/10.1016/j.foreco.2015.04.024.CrossRefGoogle Scholar
  75. Fordham Damien A, Akçakaya HR, Araújo Miguel B, Keith David A, Brook Barry W. Tools for integrating range change, extinction risk and climate change information into conservation management. Ecography. 2013;36(9):956–64.  https://doi.org/10.1111/j.1600-0587.2013.00147.x.CrossRefGoogle Scholar
  76. Forman RTT, Godron M. Patches and structural components for a landscape ecology. Bioscience. 1981;31(10):733–40.  https://doi.org/10.2307/1308780.CrossRefGoogle Scholar
  77. Fosberg FR. Geography, ecology and biogeography. Ann Assoc Am Geogr. 1976;66(1):117–23.  https://doi.org/10.1111/j.1467-8306.1976.tb01075.x.CrossRefGoogle Scholar
  78. Franklin J. Moving beyond static species distribution models in support of conservation biogeography. Divers Distrib. 2010;16(3):321–30.  https://doi.org/10.1111/j.1472-4642.2010.00641.x.CrossRefGoogle Scholar
  79. Franklin JF, Krueger K. Germination of true fir and mountain hemlock seed on snow. J For. 1968;66:416–7.Google Scholar
  80. Franklin J, Miller JA. Mapping species distributions. Cambridge: Cambridge University Press; 2009.Google Scholar
  81. Fritts HC. Tree rings and climate. New York: Academic Press; 1976.Google Scholar
  82. Gaddis KD, Thompson PG, Sork VL. Dry-washes determine gene flow and genetic diversity in a common desert shrub. Landsc Ecol. 2016;31(10):2215–29.  https://doi.org/10.1007/s10980-016-0393-7.CrossRefGoogle Scholar
  83. Garroway CJ, Bowman J, Carr D, Wilson PJ. Applications of graph theory to landscape genetics. Evol Appl. 2008;1(4):620–30.  https://doi.org/10.1111/j.1752-4571.2008.00047.x.CrossRefPubMedPubMedCentralGoogle Scholar
  84. Geraldes A, Farzaneh N, Grassa CJ, McKown AD, Guy RD, Mansfield SD, et al. Landscape genomics of Populus trichocarpa: the role of hybridization, limited gene flow, and natural selection in shaping patterns of population structure. Evolution. 2014;68(11):3260–80.  https://doi.org/10.1111/evo.12497.CrossRefPubMedGoogle Scholar
  85. Giller PS, Myers AA, Riddle BR. Earth history, vicariance, and dispersal. In: Lomolino MV, Sax DF, Brown JH, editors. Foundations of biogeography. Chicago: University of Chicago Press; 2004. p. 267–76.Google Scholar
  86. González-Martínez S, Gerber S, Cervera M, Martínez-Zapater J, Gil L, Alía R. Seed gene flow and fine-scale structure in a Mediterranean pine (Pinus pinaster Ait.) using nuclear microsatellite markers. Theor Appl Genet. 2002;104(8):1290–7.  https://doi.org/10.1007/s00122-002-0894-4.CrossRefPubMedGoogle Scholar
  87. Gotelli NJ, Stanton-Geddes J. Climate change, genetic markers and species distribution modelling. J Biogeogr. 2015;42(9):1577–85.  https://doi.org/10.1111/jbi.12562.CrossRefGoogle Scholar
  88. Grissino-Mayer HD, Swetnam TW. Century-scale climate forcing of fire regimes in the American Southwest. The Holocene. 2000;10(2):213–20.Google Scholar
  89. Gugger PF, Sugita S, Cavender-Bares J. Phylogeography of Douglas-fir based on mitochondrial and chloroplast DNA sequences: testing hypotheses from the fossil record. Mol Ecol. 2010;19(9):1877–97.  https://doi.org/10.1111/j.1365-294X.2010.04622.x.CrossRefPubMedGoogle Scholar
  90. Guillot G, Leblois R, Coulon A, Frantz AC. Statistical methods in spatial genetics. Mol Ecol. 2009;18:4734–56.PubMedGoogle Scholar
  91. Haines-Young R, Chopping M. Quantifying landscape structure: a review of landscape indices and their application to forested landscapes. Prog Phys Geogr. 1996;20(4):418–45.Google Scholar
  92. Hamann A, Roberts DR, Barber QE, Carroll C, Nielsen SE. Velocity of climate change algorithms for guiding conservation and management. Glob Chang Biol. 2015;21(2):997–1004.  https://doi.org/10.1111/gcb.12736.CrossRefPubMedGoogle Scholar
  93. Hamilton WD, May RM. Dispersal in stable habitats. Nature. 1977;269:578–81.Google Scholar
  94. Hancock AM, Brachi B, Faure N, Horton MW, Jarymowycz LB, Sperone FG, et al. Adaptation to climate across the Arabidopsis thaliana genome. Science. 2011;334:83–6.PubMedGoogle Scholar
  95. Hand BK, Lowe WH, Kovach RP, Muhlfeld CC, Luikart G. Landscape community genomics: understanding eco-evolutionary processes in complex environments. Trends Ecol Evol. 2015;30(3):161–8.  https://doi.org/10.1016/j.tree.2015.01.005.CrossRefGoogle Scholar
  96. Harley G, Baisan C, Brown P, Falk D, Flatley W, Grissino-Mayer H, et al. Advancing dendrochronological studies of fire in the United States. Fire. 2018;1(1):11.Google Scholar
  97. Heer K, Behringer D, Piermattei A, Bässler C, Brandl R, Fady B, et al. Linking dendroecology and association genetics in natural populations: stress responses archived in tree rings associate with SNP genotypes in silver fir (Abies alba Mill.). Mol Ecol. 2018;27(6):1428–38.  https://doi.org/10.1111/mec.14538.CrossRefPubMedGoogle Scholar
  98. Heezen BC. The rift in the ocean floor. Sci Am. 1960;203(4):98–114.Google Scholar
  99. Hengeveld R. Ecological biogeography. Prog Phys Geogr. 1993;17(4):448–60.  https://doi.org/10.1177/030913339301700403.CrossRefGoogle Scholar
  100. Hennig W. Phylogenetic systematics. 3rd ed. Urbana: University of Illinois Press; 1979.Google Scholar
  101. Herrera S, Shank TM. RAD sequencing enables unprecedented phylogenetic resolution and objective species delimitation in recalcitrant divergent taxa. Mol Phylogenet Evol. 2016;100:70–9.  https://doi.org/10.1016/j.ympev.2016.03.010.CrossRefPubMedGoogle Scholar
  102. Herring EM, Gavin DG, Dobrowski SZ, Fernandez M, Hu FS. Ecological history of a long-lived conifer in a disjunct population. J Ecol. 2017;106(1):319–32.  https://doi.org/10.1111/1365-2745.12826.CrossRefGoogle Scholar
  103. Hess HH. History of ocean basins. In: Engel AEJ, James HL, Leonard BF, editors. Petrological studies: a volume to Honor A. F. Buddington. Boulder: Geological Society of America; 1962. p. 599–620.Google Scholar
  104. Hewitt GM. Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linn Soc. 1996;58(3):247–76.  https://doi.org/10.1111/j.1095-8312.1996.tb01434.x.CrossRefGoogle Scholar
  105. Hewitt GM. Genetic consequences of climatic oscillations in the quaternary. Philos Trans R Soc Lond Ser B Biol Sci. 2004;359(1442):183.Google Scholar
  106. Hipp AL, Manos PS, González-Rodríguez A, Hahn M, Kaproth M, McVay JD, et al. Sympatric parallel diversification of major oak clades in the Americas and the origins of Mexican species diversity. New Phytol. 2018;217(1):439–52.  https://doi.org/10.1111/nph.14773.CrossRefPubMedGoogle Scholar
  107. Hoban S. Integrative conservation genetics: prioritizing populations using climate predictions, adaptive potential and habitat connectivity. Mol Ecol Resour. 2018;18(1):14–7.  https://doi.org/10.1111/1755-0998.12752.CrossRefPubMedGoogle Scholar
  108. Hodel RGJ, Chen S, Payton AC, McDaniel SF, Soltis P, Soltis DE. Adding loci improves phylogeographic resolution in red mangroves despite increased missing data: comparing microsatellites and RAD-Seq and investigating loci filtering. Sci Rep. 2017;7(1):17598.  https://doi.org/10.1038/s41598-017-16810-7.CrossRefPubMedPubMedCentralGoogle Scholar
  109. Holderegger R, Wagner HH. Landscape genetics. Bioscience. 2008;58:199–207.Google Scholar
  110. Holderegger R, Buehler D, Gugerli F, Manel S. Landscape genetics of plants. Trends Plant Sci. 2010;15(12):675–83.  https://doi.org/10.1016/j.tplants.2010.09.002.CrossRefPubMedGoogle Scholar
  111. Housset JM, Nadeau S, Isabel N, Depardieu C, Duchesne I, Lenz P, et al. Tree rings provide a new class of phenotypes for genetic associations that foster insights into adaptation of conifers to climate change. New Phytol. 2018;218:630–45.  https://doi.org/10.1111/nph.14968.CrossRefPubMedPubMedCentralGoogle Scholar
  112. Howe HF, Smallwood J. Ecology of seed dispersal. Annu Rev Ecol Syst. 1982;13:201–28.Google Scholar
  113. Hutchinson GE. Homage to Santa Rosalia or why are there so many kinds of animals? Am Nat. 1959;92:145–59.Google Scholar
  114. Hylander K, Ehrlén J, Luoto M, Meineri E. Microrefugia: not for everyone. Ambio. 2015;44(1):60–8.  https://doi.org/10.1007/s13280-014-0599-3.CrossRefPubMedCentralGoogle Scholar
  115. Ikeda DH, Max TL, Allan GJ, Lau MK, Shuster SM, Whitham TG. Genetically informed ecological niche models improve climate change predictions. Glob Chang Biol. 2016;23(1):164–76.  https://doi.org/10.1111/gcb.13470.CrossRefPubMedGoogle Scholar
  116. Ismail SA, Ghazoul J, Ravikanth G, Kushalappa CG, Shaanker RU, Kettle CJ. Evaluating realized seed dispersal across fragmented tropical landscapes: a two-fold approach using parentage analysis and the neighbourhood model. New Phytol. 2017;214(3):1307–16.  https://doi.org/10.1111/nph.14427.CrossRefPubMedGoogle Scholar
  117. Iverson LR, Prasad AM, Matthews SN, Peters MP. Lessons learned while integrating habitat, dispersal, disturbance, and life-history traits into species habitat models under climate change. Ecosystems. 2011;14(6):1005–20.  https://doi.org/10.1007/s10021-011-9456-4.CrossRefGoogle Scholar
  118. Johnson JS, Gaddis KD, Cairns DM, Lafon CW, Krutovsky KV. Plant responses to global change: next generation biogeography. Phys Geogr. 2016;37:93–119.  https://doi.org/10.1080/02723646.2016.1162597.CrossRefGoogle Scholar
  119. Johnson J, Chhetri P, Krutovsky K, Cairns D. Growth and its relationship to individual genetic diversity of mountain hemlock (Tsuga mertensiana) at alpine treeline in Alaska: combining dendrochronology and genomics. Forests. 2017a;8(11):418.  https://doi.org/10.3390/f8110418.CrossRefGoogle Scholar
  120. Johnson JS, Gaddis KD, Cairns DM, Konganti K, Krutovsky KV. Landscape genomic insights into the historic migration of mountain hemlock in response to Holocene climate change. Am J Bot. 2017b;104(3):439–50.  https://doi.org/10.3732/ajb.1600262.CrossRefPubMedGoogle Scholar
  121. Johnson JS, Gaddis KD, Cairns DM, Krutovsky KV. Seed dispersal at alpine treeline: an assessment of seed movement within the alpine treeline ecotone. Ecosphere. 2017c;8(1):e01649.  https://doi.org/10.1002/ecs2.1649.CrossRefGoogle Scholar
  122. Jones MC, Peteet DM, Kurdyla D, Guilderson T. Climate and vegetation history from a 14,000-year peatland record, Kenai Peninsula, Alaska. Quat Res. 2009;72(2):207–17.  https://doi.org/10.1016/j.yqres.2009.04.002.CrossRefGoogle Scholar
  123. Kays R, Crofoot MC, Jetz W, Wikelski M. Terrestrial animal tracking as an eye on life and planet. Science. 2015;348(6240):aaa2478.PubMedGoogle Scholar
  124. Kimura M. Evolutionary rate at the molecular level. Nature. 1968;217:624.  https://doi.org/10.1038/217624a0.CrossRefGoogle Scholar
  125. Kimura M. The neutral theory of molecular evolution. Sci Am. 1979;241(5):98–129.PubMedGoogle Scholar
  126. Kleinman JS, Hart JL. Response by vertical strata to catastrophic wind in restored Pinus palustris stands. J Torrey Bot Soc. 2017;144(4):423–38.  https://doi.org/10.3159/TORREY-D-16-00046.1.CrossRefGoogle Scholar
  127. Knowles LL, Carstens BC, Keat Marcia L. Coupling genetic and ecological-niche models to examine how past population distributions contribute to divergence. Curr Biol. 2007;17(11):940–6.  https://doi.org/10.1016/j.cub.2007.04.033.CrossRefPubMedGoogle Scholar
  128. Körner C. A re-assessment of high elevation treeline positions and their explanation. Oecologia. 1998;115(4):445–59.  https://doi.org/10.1007/s004420050540.CrossRefPubMedGoogle Scholar
  129. Körner C, Paulsen J. A world-wide study of high altitude treeline temperatures. J Biogeogr. 2004;31(5):713–32.  https://doi.org/10.1111/j.1365-2699.2003.01043.x.CrossRefGoogle Scholar
  130. Kraft NJB, Baldwin BG, Ackerly DD. Range size, taxon age and hotspots of neoendemism in the California flora. Divers Distrib. 2010;16(3):403–13.  https://doi.org/10.1111/j.1472-4642.2010.00640.x.CrossRefGoogle Scholar
  131. Kramer-Schadt S, Niedballa J, Pilgrim JD, Schröder B, Lindenborn J, Reinfelder V, et al. The importance of correcting for sampling bias in MaxEnt species distribution models. Divers Distrib. 2013;19(11):1366–79.  https://doi.org/10.1111/ddi.12096.CrossRefGoogle Scholar
  132. Krutovsky K, Elsik C, Matvienko M, Kozik A, Neale D. Conserved ortholog sets in forest trees. Tree Genet Genomes. 2006;3(1):61–70.  https://doi.org/10.1007/s11295-006-0052-2.CrossRefGoogle Scholar
  133. Krutovsky KV, Burczyk J, Chybicki IJ, Finkeldey R, Pyhajarvi T, Robledo-Arnuncio JJ. Gene flow, spatial structure, local adaptation, assisted migration in trees. In: Schnell RJ, Priyadarshan PM, editors. Genomics of tree crops. New York: Springer; 2012. p. 71–116.Google Scholar
  134. Kupfer JA. Landscape ecology and biogeography. Prog Phys Geogr. 1995;19:18–34.Google Scholar
  135. Kupfer JA. Theory in landscape ecology and its relevance to biogeography. In: Millington AC, Blumler MA, MacDonald G, Schickhoff U, editors. The Sage handbook of biogeography. London: SAGE; 2011.Google Scholar
  136. Kupfer JA. Landscape ecology and biogeography: rethinking landscape metrics in a post-FRAGSTATS landscape. Prog Phys Geogr. 2012;36:400–20.Google Scholar
  137. Kupfer JA, Malanson GP, Franklin SB. Not seeing the ocean for the islands: the mediating influence of matrix-based processes on forest fragmentation effects. Glob Ecol Biogeogr. 2006;15(1):8–20.  https://doi.org/10.1111/j.1466-822X.2006.00204.x.CrossRefGoogle Scholar
  138. Lafon CW, Speer JH. Using dendrochronology to identify major ice storm events in oak forests of southwestern Virginia. Clim Res. 2002;20(1):41–54.Google Scholar
  139. Lafon CW, Naito AT, Grissino-Mayer HD, Horn SP, Waldrop TA. Fire history of the Appalachian region: a review and synthesis. USDA United States forest service general technical report SRS-219. 2017.Google Scholar
  140. Leaché AD, Oaks JR. The utility of single nucleotide polymorphism (SNP) data in phylogenetics. Annu Rev Ecol Evol Syst. 2017;48(1):69–84.  https://doi.org/10.1146/annurev-ecolsys-110316-022645.CrossRefGoogle Scholar
  141. Lee S-R, Jo Y-S, Park C-H, Friedman JM, Olson MS. Population genomic analysis suggests strong influence of river network on spatial distribution of genetic variation in invasive saltcedar across the southwestern United States. Mol Ecol. 2018;27(3):636–46.  https://doi.org/10.1111/mec.14468.CrossRefPubMedGoogle Scholar
  142. Levey DJ, Sargent S. A simple method for tracking vertebrate-dispersed seeds. Ecology. 2000;81(1):267–74.  https://doi.org/10.1890/0012-9658(2000)081[0267:ASMFTV]2.0.CO;2.CrossRefGoogle Scholar
  143. Loarie SR, Duffy PB, Hamilton H, Asner GP, Field CB, Ackerly DD. The velocity of climate change. Nature. 2009;462:1052–5.PubMedGoogle Scholar
  144. Lomolino MV. Conservation biogeography. In: Lomolino MV, Heaney LR, editors. Frontiers of biogeography: new direction in the geography of nature. Sunderland: Sinauer Associates; 2004. p. 1–3.Google Scholar
  145. Lomolino MV, Riddle BR, Whittaker RH. Biogeography: biological diversity across space and time. 5th ed. Sunderland: Sinauer; 2017.Google Scholar
  146. MacArthur R. On the relative abundance of species. Am Nat. 1960;94(874):25–36.  https://doi.org/10.2307/2458395.CrossRefGoogle Scholar
  147. MacArthur RH, Wilson EO. An equilibrium theory of insular zoogeography. Evolution. 1963;17:373–87.Google Scholar
  148. MacArthur RH, Wilson EO. The theory of island biogeography. Princeton: Princeton University Press; 1967.Google Scholar
  149. MacDonald GM. Preparing biogeographers for the third millennium. J Biogeogr. 2000;27:49–50.Google Scholar
  150. MacDonald GM. Biogeography. New York: Wiley; 2003.Google Scholar
  151. MacDonald GM, Szeicz JM, Claricoates J, Dale KA. Response of the Central Canadian treeline to recent climatic changes. Ann Assoc Am Geogr. 1998;88(2):183–208.  https://doi.org/10.1111/1467-8306.00090.CrossRefGoogle Scholar
  152. Magri D. Patterns of post-glacial spread and the extent of glacial refugia of European beech (Fagus sylvatica). J Biogeogr. 2008;35(3):450–63.Google Scholar
  153. Manel S, Holderegger R. Ten years of landscape genetics. Trends Ecol Evol. 2013;28(10):614–21.  https://doi.org/10.1016/j.tree.2013.05.012.CrossRefGoogle Scholar
  154. Manel S, Schwartz MK, Luikart G, Taberlet P. Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol. 2003;18(4):189–97.  https://doi.org/10.1016/s0169-5347(03)00008-9.CrossRefGoogle Scholar
  155. Mann ME, Jones PD. Global surface temperatures over the past two millennia. Geophys Res Lett. 2003;30(15).  https://doi.org/10.1029/2003GL017814.
  156. Marcer A, Méndez-Vigo B, Alonso-Blanco C, Picó FX. Tackling intraspecific genetic structure in distribution models better reflects species geographical range. Ecol Evol. 2016;6(7):2084–97.  https://doi.org/10.1002/ece3.2010.CrossRefPubMedPubMedCentralGoogle Scholar
  157. Marcott SA, Shakun JD, Clark PU, Mix AC. A reconstruction of regional and global temperature for the past 11,300 years. Science. 2013;339(6124):1198.PubMedGoogle Scholar
  158. Markwith SH, Scanlon MJ. Characterization of six polymorphic microsatellite loci isolated from Hymenocallis coronaria (J. LeConte) Kunth (Amaryllidaceae). Mol Ecol Notes. 2006;6(1):72–4.Google Scholar
  159. Mayol M, Riba M, González-Martínez Santiago C, Bagnoli F, Beaulieu JL, Berganzo E, et al. Adapting through glacial cycles: insights from a long-lived tree (Taxus baccata). New Phytol. 2015;208(3):973–86.  https://doi.org/10.1111/nph.13496.CrossRefPubMedGoogle Scholar
  160. Mayr E. Systematics and the origin of species. New York: Columbia University Press; 1942.Google Scholar
  161. Mayr E. Ecological factors in speciation. Evolution. 1947;1(4):263–88.  https://doi.org/10.1111/j.1558-5646.1947.tb02723.x.CrossRefGoogle Scholar
  162. Mayr E. The growth of biological thought. Cambridge: Harvard University Press; 1982.Google Scholar
  163. McCaughey WW, Schmidt WC. Seed dispersal of Engelmann spruce in the intermountain west. Northwest Sci. 1987;61:1–6.Google Scholar
  164. McCormack JE, Hird SM, Zellmer AJ, Carstens BC, Brumfield RT. Applications of next-generation sequencing to phylogeography and phylogenetics. Mol Phylogenet Evol. 2013;66(2):526–38.  https://doi.org/10.1016/j.ympev.2011.12.007.CrossRefPubMedGoogle Scholar
  165. McLean N, Lawson CR, Leech DI, van de Pol M. Predicting when climate-driven phenotypic change affects population dynamics. Ecol Lett. 2016;19(6):595–608.  https://doi.org/10.1111/ele.12599.CrossRefPubMedGoogle Scholar
  166. McRae BH. Isolation by resistance. Evolution. 2006;60:1551–61.PubMedGoogle Scholar
  167. McRae BH, Beier P. Circuit theory predicts gene flow in plant and animal populations. Proc Natl Acad Sci. 2007;104(50):19885–90.  https://doi.org/10.1073/pnas.0706568104.CrossRefPubMedGoogle Scholar
  168. McRae BH, Dickson BG, Keitt TH, Shah VB. Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology. 2008;89(10):2712–24.  https://doi.org/10.1890/07-1861.1.CrossRefPubMedGoogle Scholar
  169. McRae BH, Shirk A, Platt JT. Gnarly landscape utilities: resistance and habitat calculator. Seattle: The Nature Conservancy; 2013.Google Scholar
  170. Means JE. Tsuga mertensiana. In: Burns RM, Honkala BH, editors. Silvics of North America, vol. 1. Washington: Forest Service; 1990. p. 1279–306.Google Scholar
  171. Menon M, Bagley JC, Friedline CJ, Whipple AV, Schoettle AW, Leal-Sàenz A, et al. The role of hybridization during ecological divergence of southwestern white pine (Pinus strobiformis) and limber pine (P. flexilis). Mol Ecol. 2018;27(5):1245–60.  https://doi.org/10.1111/mec.14505.CrossRefPubMedGoogle Scholar
  172. Micheletti SJ, Storfer A. An approach for identifying cryptic barriers to gene flow that limit species’ geographic ranges. Mol Ecol. 2017;26(2):490–504.  https://doi.org/10.1111/mec.13939.CrossRefPubMedGoogle Scholar
  173. Millington AC, Blumler MA, MacDonald G, Schickhoff U. The SAGE handbook of biogeography. London: SAGE; 2011a.Google Scholar
  174. Millington AC, Blumler MA, Schickhoff U. Situating contemporary biogeography. In: Millington AC, Blumler MA, Schickhoff U, editors. The SAGE handbook of biogeography. Los Angeles: SAGE; 2011b.Google Scholar
  175. Mitton JB. Relationship between heterozygosity for enzyme loci and variation of morphological characters in natural populations. Nature. 1978;273(5664):661–2.PubMedGoogle Scholar
  176. Muir G, Schlötterer C. Evidence for shared ancestral polymorphism rather than recurrent gene flow at microsatellite loci differentiating two hybridizing oaks (Quercus spp.). Mol Ecol. 2005;14(2):549–61.PubMedGoogle Scholar
  177. Murray DC, Pearson SG, Fullagar R, Chase BM, Houston J, Atchison J, et al. High-throughput sequencing of ancient plant and mammal DNA preserved in herbivore middens. Quat Sci Rev. 2012;58:135–45.  https://doi.org/10.1016/j.quascirev.2012.10.021.CrossRefGoogle Scholar
  178. Naito AT, Cairns DM. Relationships between Arctic shrub dynamics and topographically derived hydrologic characteristics. Environ Res Lett. 2011;11(4):1–8.Google Scholar
  179. Nathan R. Long-distance dispersal of plants. Science. 2006;313(5788):786–8.  https://doi.org/10.1126/science.1124975.CrossRefPubMedGoogle Scholar
  180. Nathan R, Muller-Landau HC. Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Trends Ecol Evol. 2000;15(7):278–85.  https://doi.org/10.1016/s0169-5347(00)01874-7.CrossRefPubMedGoogle Scholar
  181. Nathan R, Katul GG, Horn HS, Thomas SM, Oren R, Avissar R, et al. Mechanisms of long-distance dispersal of seeds by wind. Nature. 2002;418(6896):409–13.PubMedGoogle Scholar
  182. Neale DB, Kremer A. Forest tree genomics: growing resources and applications. Nat Rev Genet. 2011;12(2):111–22.  https://doi.org/10.1038/nrg2931.CrossRefPubMedGoogle Scholar
  183. O’Connell LM, Mosseler A, Rajora OP. Extensive long-distance pollen dispersal in a fragmented landscape maintains genetic diversity in white spruce. J Hered. 2007;97:640–5.Google Scholar
  184. Oddou-Muratorio S, Klein EK. Comparing direct vs. indirect estimates of gene flow within a population of a scattered tree species. Mol Ecol. 2008;17(11):2743–54.  https://doi.org/10.1111/j.1365-294X.2008.03783.x.CrossRefPubMedGoogle Scholar
  185. Orsini L, Vanoverbeke J, Swillen I, Mergeay J, De Meester L. Drivers of population genetic differentiation in the wild: isolation by dispersal limitation, isolation by adaptation and isolation by colonization. Mol Ecol. 2013;22(24):5983–99.  https://doi.org/10.1111/mec.12561.CrossRefPubMedGoogle Scholar
  186. Owens JN, Molder M. Sexual reproduction of mountain hemlock (Tsuga mertensiana). Can J Bot. 1975;53(17):1811–26.  https://doi.org/10.1139/b75-211.CrossRefGoogle Scholar
  187. Pandey M, Rajora OP. Genetic diversity and differentiation of core vs. peripheral populations of eastern white cedar, Thuja occidentalis (Cupressaceae). Am J Bot. 2012;99(4):690–9.  https://doi.org/10.3732/ajb.1100116.CrossRefPubMedGoogle Scholar
  188. Parducci L, Jørgensen T, Tollefsrud MM, Elverland E, Alm T, Fontana SL, et al. Glacial survival of boreal trees in northern Scandinavia. Science. 2012;335(6072):1083.Google Scholar
  189. Parducci L, Väliranta M, Salonen JS, Ronkainen T, Matetovici I, Fontana SL, et al. Proxy comparison in ancient peat sediments: pollen, macrofossil and plant DNA. Philos Trans R Soc B. 2015;370(1660):20130382.Google Scholar
  190. Parisod C, Holderegger R. Adaptive landscape genetics: pitfalls and benefits. Mol Ecol. 2012;21:3644–6.PubMedGoogle Scholar
  191. Park Williams A, Allen CD, Macalady AK, Griffin D, Woodhouse CA, Meko DM, et al. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat Clim Chang. 2012;3:292.  https://doi.org/10.1038/nclimate1693. https://www.nature.com/articles/nclimate1693#supplementary-information CrossRefGoogle Scholar
  192. Parker KC, Hamrick JL. Genetic variation in sand pine (Pinus clausa). Can J For Res. 1996;26(2):244–54.  https://doi.org/10.1139/x26-028.CrossRefGoogle Scholar
  193. Peterson DW, Peterson DL. Mountain hemlock growth responds to climatic variability at annual and decadal time scales. Ecology. 2001;82(12):3330–45.  https://doi.org/10.1890/0012-9658(2001)082[3330:mhgrtc]2.0.co;2.CrossRefGoogle Scholar
  194. Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE. Double digest RADseq: an inexpensive method for De Novo SNP discovery and genotyping in model and non-model species. PLoS One. 2012;7(5):1–11.Google Scholar
  195. Petit RJ, Aguinagalde I, de Beaulieu J-L, Bittkau C, Brewer S, Cheddadi R, et al. Glacial refugia: hotspots but not melting pots of genetic diversity. Science. 2003;300(5625):1563–5.  https://doi.org/10.1126/science.1083264.CrossRefPubMedGoogle Scholar
  196. Phillips SJ, Anderson RP, Schapire RE. Maximum entropy modeling of species geographic distributions. Ecol Model. 2006;190(3–4):231–59.  https://doi.org/10.1016/j.ecolmodel.2005.03.026.CrossRefGoogle Scholar
  197. Phillips SJ, Dudík M, Elith J, Graham CH, Lehmann A, Leathwick J, et al. Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol Appl. 2009;19(1):181–97.  https://doi.org/10.1890/07-2153.1.CrossRefPubMedGoogle Scholar
  198. Pickett STA, Cadenasso ML. Landscape ecology: spatial heterogeneity in ecological systems. Science. 1995;269(5222):331–4.PubMedGoogle Scholar
  199. Piotti A, Leonardi S, Piovani P, Scalfi M, Menozzi P. Spruce colonization at treeline: where do those seeds come from. Heredity. 2009;103(2):136–45.PubMedGoogle Scholar
  200. Pop M, Salzberg SL. Bioinformatics challenges of new sequencing technology. Trends Genet. 2008;24:142–9.PubMedPubMedCentralGoogle Scholar
  201. Porter JH, Hanson PC, Lin C. Staying afloat in the sensor data deluge. Trends Ecol Evol. 2012;27:121–9.PubMedGoogle Scholar
  202. Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE. Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol. 2010;25(6):345–53.  https://doi.org/10.1016/j.tree.2010.01.007.CrossRefPubMedGoogle Scholar
  203. Pöyry J, Luoto M, Heikkinen RK, Saarinen K. Species traits are associated with the quality of bioclimatic models. Glob Ecol Biogeogr. 2008;17(3):403–14.  https://doi.org/10.1111/j.1466-8238.2007.00373.x.CrossRefGoogle Scholar
  204. Provan J, Bennett KD. Phylogeographic insights into cryptic glacial refugia. Trends Ecol Evol. 2008;23(10):564–71.  https://doi.org/10.1016/j.tree.2008.06.010.CrossRefPubMedGoogle Scholar
  205. Puzey JR, Willis JH, Kelly JK. Population structure and local selection yield high genomic variation in Mimulus guttatus. Mol Ecol. 2016;26(2):519–35.  https://doi.org/10.1111/mec.13922.CrossRefPubMedPubMedCentralGoogle Scholar
  206. Rajora OP, Dancik BP. Genetic characterization and relationships of Populus alba, P. tremula, and P. x canescens, and their clones. Theor Appl Genet. 1992;84(3):291–8.  https://doi.org/10.1007/BF00229485.CrossRefPubMedGoogle Scholar
  207. Rajora OP, Eckert AJ, Zinck JWR. Single-locus versus multilocus patterns of local adaptation to climate in eastern white pine (Pinus strobus, Pinaceae). PLoS One. 2016;11(7):e0158691.  https://doi.org/10.1371/journal.pone.0158691.CrossRefPubMedPubMedCentralGoogle Scholar
  208. Razgour O. Beyond species distribution modeling: a landscape genetics approach to investigating range shifts under future climate change. Ecol Inform. 2015;30:250–6.  https://doi.org/10.1016/j.ecoinf.2015.05.007.CrossRefGoogle Scholar
  209. Razgour O, Taggart John B, Manel S, Juste J, Ibáñez C, Rebelo H, et al. An integrated framework to identify wildlife populations under threat from climate change. Mol Ecol Resour. 2017;18(1):18–31.  https://doi.org/10.1111/1755-0998.12694.CrossRefPubMedGoogle Scholar
  210. Reid C. The origin of the British Flora. London: Dulau; 1899.Google Scholar
  211. Richards CL, Carstens BC, Knowles LL. Distribution modelling and statistical phylogeography: an integrative framework for generating and testing alternative biogeographical hypotheses. J Biogeogr. 2007;34(11):1833–45.Google Scholar
  212. Robledo-Arnuncio JJ, Gil L. Patterns of pollen dispersal in a small population of Pinus sylvestris L. revealed by total-exclusion paternity analysis. Heredity. 2004;94(1):13–22.Google Scholar
  213. Ruiz-Gonzalez A, Cushman SA, Madeira MJ, Randi E, Gómez-Moliner BJ. Isolation by distance, resistance and/or clusters? Lessons learned from a forest-dwelling carnivore inhabiting a heterogeneous landscape. Mol Ecol. 2015;24(20):5110–29.  https://doi.org/10.1111/mec.13392.CrossRefPubMedGoogle Scholar
  214. Rull V. Microrefugia. J Biogeogr. 2009;36(3):481–4.  https://doi.org/10.1111/j.1365-2699.2008.02023.x.CrossRefGoogle Scholar
  215. Rymer MJ, Sims JD. Lake-sediment evidence for the date of deglaciation of the hidden Lake area, Kenai Peninsula, Alaska. Geology. 1982;10(6):314–6.  https://doi.org/10.1130/0091-7613(1982)10<314:leftdo>2.0.co;2.CrossRefGoogle Scholar
  216. Savolainen O. The genomic basis of local climatic adaptation. Science. 2011;334(6052):49–50.  https://doi.org/10.1126/science.1213788.CrossRefPubMedGoogle Scholar
  217. Savolainen O, Lascoux M, Merilä J. Ecological genomics of local adaptation. Nat Rev Genet. 2013;14(11):807–20.PubMedGoogle Scholar
  218. Schickhoff U, Blumler MA, Millington AC. Biogeography in the early twenty-first century: a science with increasing significance for Earth’s changes and challenges. Geogr Pol. 2014;87(2):221–40.Google Scholar
  219. Schimper AFW. Plant-geography upon a physiological basis (Pflanzen-geographie auf physiologischer Grundlage). Oxford: Clarendon Press; 1903.Google Scholar
  220. Scoble J, Lowe AJ. A case for incorporating phylogeography and landscape genetics into species distribution modelling approaches to improve climate adaptation and conservation planning. Divers Distrib. 2010;16(3):343–53.  https://doi.org/10.1111/j.1472-4642.2010.00658.x.CrossRefGoogle Scholar
  221. Selkoe KA, Toonen RJ. Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol Lett. 2006;9(5):615–29.  https://doi.org/10.1111/j.1461-0248.2006.00889.x.CrossRefPubMedGoogle Scholar
  222. Semerikov VL, Semerikova SA, Putintseva YA, Tarakanov VV, Tikhonova IV, Vidyakin AI, et al. Colonization history of scots pine in Eastern Europe and North Asia based on mitochondrial DNA variation. Tree Genet Genomes. 2018;14(1):8.  https://doi.org/10.1007/s11295-017-1222-0.CrossRefGoogle Scholar
  223. Sexton JP, Hangartner SB, Hoffmann AA. Genetic isolation by environment or distance: which pattern of gene flow is most common? Evolution. 2014;68(1):1–15.  https://doi.org/10.1111/evo.12258.CrossRefPubMedGoogle Scholar
  224. Shafer ABA, Cullingham CI, CÔTÉ SD, Coltman DW. Of glaciers and refugia: a decade of study sheds new light on the phylogeography of northwestern North America. Mol Ecol. 2010;19(21):4589–621.  https://doi.org/10.1111/j.1365-294X.2010.04828.x.CrossRefPubMedGoogle Scholar
  225. Shah VB, McRae BH. Circuitscape: a tool for landscape ecology. In: Proceedings of the 7th python in science conference, 2008, p. 62–66.Google Scholar
  226. Shirk AJ, Cushman SA, Waring KM, Wehenkel CA, Leal-Sáenz A, Toney C, et al. Southwestern white pine (Pinus strobiformis) species distribution models project a large range shift and contraction due to regional climatic changes. For Ecol Manag. 2018;411:176–86.  https://doi.org/10.1016/j.foreco.2018.01.025.CrossRefGoogle Scholar
  227. Silvertown J, Servaes C, Biss P, Macleod D. Reinforcement of reproductive isolation between adjacent populations in the park grass experiment. Heredity. 2005;95:198.  https://doi.org/10.1038/sj.hdy.6800710.CrossRefPubMedGoogle Scholar
  228. Skellam JG. Random dispersal in theoretical populations. Biometrika. 1951;38(1/2):196–218.  https://doi.org/10.2307/2332328.CrossRefPubMedGoogle Scholar
  229. Sork VL. Genomic studies of local adaptation in natural plant populations. J Hered. 2018;109(1):3–15.  https://doi.org/10.1093/jhered/esx091.CrossRefGoogle Scholar
  230. Sork VL, Davis FW, Westfall R, Flint A, Ikegami M, Wang H, et al. Gene movement and genetic association with regional climate gradients in California valley oak (Quercus lobata Née) in the face of climate change. Mol Ecol. 2010;19(17):3806–23.  https://doi.org/10.1111/j.1365-294X.2010.04726.x.CrossRefPubMedGoogle Scholar
  231. Sork VL, Aitken SN, Dyer RJ, Eckert AJ, Legendre P, Neale DB. Putting the landscape into the genomics of trees: approaches for understanding local adaptation and population responses to changing climate. Tree Genet Genomes. 2013;9(4):901–11.  https://doi.org/10.1007/s11295-013-0596-x.CrossRefGoogle Scholar
  232. Speer JH. Fundamentals of tree-ring research. Tucson: University of Arizona Press; 2010.Google Scholar
  233. Stapley J, Reger J, Feulner PGD, Smadja C, Galindo J, Ekblom R, et al. Adaptation genomics: the next generation. Trends Ecol Evol. 2010;25(12):705–12.  https://doi.org/10.1016/j.tree.2010.09.002.CrossRefPubMedGoogle Scholar
  234. Storfer A, Murphy MA, Spear SF, Holderegger R, Waits LP. Landscape genetics: where are we now? Mol Ecol. 2010;19(17):3496–514.PubMedGoogle Scholar
  235. Suarez-Gonzalez A, Hefer CA, Lexer C, Cronk Quentin CB, Douglas CJ. Scale and direction of adaptive introgression between black cottonwood (Populus trichocarpa) and balsam poplar (P. balsamifera). Mol Ecol. 2018;27:1667–80.PubMedGoogle Scholar
  236. Taylor AH. Forest expansion and climate change in the mountain hemlock (Tsuga mertensiana) zone, Lassen Volcanic National Park, California, U.S.A. Arct Alp Res. 1995;27:207–16.Google Scholar
  237. Tobler WR. A computer movie simulating urban growth in the Detroit region. Econ Geogr. 1970;46:234–40.Google Scholar
  238. Turner MG. Landscape ecology: the effect of pattern on process. Annu Rev Ecol Syst. 1989;20:171–97.Google Scholar
  239. Veblen TT. Biogeography. In: Gaile GL, Willmott CJ, editors. Geography in America at the dawn of the twenty-first century. Columbus: Merrill; 1989. p. 28–46.Google Scholar
  240. Veblen TT, Hadley KS, Reid MS, Rebertus AJ. The response of subalpine forests to spruce beetle outbreak in Colorado. Ecology. 1991;72(1):213–31.  https://doi.org/10.2307/1938916.CrossRefGoogle Scholar
  241. Veblen TT, Hadley KS, Nel EM, Kitzberger T, Reid M, Villalba R. Disturbance regime and disturbance interactions in a Rocky Mountain subalpine forest. J Ecol. 1994;82(1):125–35.  https://doi.org/10.2307/2261392.CrossRefGoogle Scholar
  242. Vine FJ, Matthews DH. Magnetic anomalies over oceanic ridges. Nature. 1963;199:947.  https://doi.org/10.1038/199947a0.CrossRefGoogle Scholar
  243. Von Humboldt A, Bonpland A. Essai sur la géographie des plantes. Paris: Schoell; 1805.Google Scholar
  244. Wagner CE, Keller I, Wittwer S, Selz OM, Mwaiko S, Greuter L, et al. Genome-wide RAD sequence data provide unprecedented resolution of species boundaries and relationships in the Lake Victoria cichlid adaptive radiation. Mol Ecol. 2013;22(3):787–98.  https://doi.org/10.1111/mec.12023.CrossRefPubMedGoogle Scholar
  245. Webb T III. The appearance and disappearance of major vegetational assemblages: long-term vegetational dynamics in eastern North America. Vegetatio. 1987;69(1–3):177–87.  https://doi.org/10.1007/bf00038699.CrossRefGoogle Scholar
  246. Wheeler NC, Guries RP. Biogeography of lodgepole pine. Can J Bot. 1982;60(9):1805–14.  https://doi.org/10.1139/b82-227.CrossRefGoogle Scholar
  247. White PS, Pickett STA. Natural disturbance and patch dynamics: an introduction. In: Pickett STA, White PS, editors. The ecology of disturbance and patch dynamics. Orlando: Academic Press; 1985.Google Scholar
  248. Whittaker RJ, Bush MB, Richards K. Plant recolonization and vegetation succession on the Krakatau islands, Indonesia. Ecol Monogr. 1989;59(2):59–123.  https://doi.org/10.2307/2937282.CrossRefGoogle Scholar
  249. Whittaker RJ, Araujo MB, Jepson P, Ladle RJ, Watson JEM, Willis KJ. Conservation biogeography: assessment and prospect. Divers Distrib. 2005;11(1):3–23.Google Scholar
  250. Wiens JJ. Spatial scaling in ecology. Funct Ecol. 1989;3:385–97.Google Scholar
  251. Wiley EO. Vicariance biogeography. Annu Rev Ecol Syst. 1988;19:513–42.Google Scholar
  252. Willerslev E, Davison J, Moora M, Zobel M, Coissac E, Edwards ME, et al. Fifty thousand years of Arctic vegetation and megafaunal diet. Nature. 2014;506(7486):47–51.  https://doi.org/10.1038/nature12921.CrossRefPubMedGoogle Scholar
  253. Willson MF, Traveset A. The ecology of seed dispersal. In: Fenner M, editor. Seeds: the ecology of regeneration in plant communities. 2nd ed. New York: CABI; 2000.Google Scholar
  254. Wilmshurst JM, Moar NT, Wood JR, Bellingham PJ, Findlater AM, Robinson JJ, et al. Use of pollen and ancient DNA as conservation baselines for offshore islands in New Zealand. Conserv Biol. 2013;28(1):202–12.  https://doi.org/10.1111/cobi.12150.CrossRefPubMedGoogle Scholar
  255. Wilson EO. The diversity of life. Cambridge: Harvard University Press; 1992.Google Scholar
  256. Woodhouse CA, Meko DM, MacDonald GM, Stahle DW, Cook ER. A 1,200-year perspective of twenty-first century drought in southwestern North America. Proc Natl Acad Sci. 2010;107(50):21283.PubMedGoogle Scholar
  257. Woodward A, Silsbee DG, Schreiner EG, Means JE. Influence of climate on radial growth and cone production in subalpine fir (Abies lasiocarpa) and mountain hemlock (Tsuga mertensiana). Can J Forest Res. 1994;24:1133–43.Google Scholar
  258. Wright S. The genetical structure of populations. Ann Hum Genet. 1949;15(1):323–54.  https://doi.org/10.1111/j.1469-1809.1949.tb02451.x.CrossRefGoogle Scholar
  259. Xiao Z, Jansen PA, Zhang Z. Using seed-tagging methods for assessing post-dispersal seed fate in rodent-dispersed trees. For Ecol Manag. 2006;223(1):18–23.  https://doi.org/10.1016/j.foreco.2005.10.054.CrossRefGoogle Scholar
  260. Xu B, Sun G, Wang X, Lu J, Wang IJ, Wang Z. Population genetic structure is shaped by historical, geographic, and environmental factors in the leguminous shrub Caragana microphylla on the Inner Mongolia Plateau of China. BMC Plant Biol. 2017;17(1):200.  https://doi.org/10.1186/s12870-017-1147-7.CrossRefPubMedPubMedCentralGoogle Scholar
  261. Yang M, He Z, Shi S, Wu CI. Can genomic data alone tell us whether speciation happened with gene flow? Mol Ecol. 2017;26(11):2845–9.  https://doi.org/10.1111/mec.14117.CrossRefPubMedGoogle Scholar
  262. Young AB, Cairns DM, Lafone CW. Dendroclimatic relationships and possible implications for mountain birch and scots pine at treeline in northern Sweden through the twenty-first century. Can J Forest Res. 2011;41:450–9.Google Scholar
  263. Zhou W, Ji X, Obata S, Pais A, Dong Y, Peet R, et al. Resolving relationships and phylogeographic history of the Nyssa sylvatica complex using data from RAD-seq and species distribution modeling. Mol Phylogenet Evol. 2018;126:1–16.  https://doi.org/10.1016/j.ympev.2018.04.001.CrossRefPubMedGoogle Scholar
  264. Zinck JWR, Rajora OP. Post-glacial phylogeography and evolution of a wide-ranging highly-exploited keystone forest tree, eastern white pine (Pinus strobus) in North America: single refugium, multiple routes. BMC Evol Biol. 2016;16(1):56.  https://doi.org/10.1186/s12862-016-0624-1.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jeremy S. Johnson
    • 1
    Email author
  • Konstantin V. Krutovsky
    • 2
    • 3
    • 4
    • 5
  • Om P. Rajora
    • 6
  • Keith D. Gaddis
    • 7
  • David M. Cairns
    • 7
  1. 1.School of ForestryNorthern Arizona UniversityFlagstaffUSA
  2. 2.Department of Forest Genetics and Forest Tree BreedingGeorg-August University of GöttingenGöttingenGermany
  3. 3.Department of Ecosystem Science and ManagementTexas A&M UniversityCollege StationUSA
  4. 4.Laboratory of Population GeneticsN. I. Vavilov Institute of General Genetics, Russian Academy of SciencesMoscowRussia
  5. 5.Genome Research and Education CenterSiberian Federal UniversityKrasnoyarskRussia
  6. 6.Faculty of Forestry and Environmental ManagementUniversity of New BrunswickFrederictonCanada
  7. 7.Department of GeographyTexas A&M UniversityCollege StationUSA

Personalised recommendations