An Introductory Narrative to the Population Genomics of Pathogenic Bacteria, Exemplified by Neisseria meningitidis

  • Kanny Diallo
  • Martin C. J. MaidenEmail author
Part of the Population Genomics book series (POGE)


The ability to study populations of bacteria, rather than individual isolates from cases of disease, represented a step change in our understanding of the bacterial pathogenesis. The last few decades of the twentieth century and the first two of the twenty-first century saw the development of conceptual, technical, and analytical approaches that enabled the development of first bacterial population genetics and then bacterial population genomics, with the study of pathogens in the forefront of this development. These investigations have enabled the diversity of bacterial pathogen lifestyles to be revealed, including details of their ecology and evolution. Studies of the pathogenic Neisseria and specifically Neisseria meningitidis were in the forefront of these developments, driven in part because of the complexities of the pathobiology of this organism. In addition to insights into the biology of the meningococcus, these studies have provided insights into bacterial population genomics generally, provided a number of broadly applicable techniques, and had major impacts on understanding and controlling meningococcal disease with vaccination.


Epidemiology Evolution Meningococcus MLST Vaccination 


  1. Achtman M. Population structure of pathogenic bacteria revisited. Int J Med Microbiol. 2004;294(2–3):67–73.PubMedGoogle Scholar
  2. Achtman M. Evolution, population structure, and phylogeography of genetically monomorphic bacterial pathogens. Annu Rev Microbiol. 2008;62:53–70.PubMedGoogle Scholar
  3. Achtman M, Wagner M. Microbial diversity and the genetic nature of microbial species. Nat Rev Microbiol. 2008;6(6):431–40.PubMedGoogle Scholar
  4. Achtman M, et al. Multilocus sequence typing as a replacement for serotyping in Salmonella enterica. PLoS Pathog. 2012;8(6):e1002776.PubMedPubMedCentralGoogle Scholar
  5. Ashton PM, et al. Identification of Salmonella for public health surveillance using whole genome sequencing. PeerJ. 2016;4:e1752.PubMedPubMedCentralGoogle Scholar
  6. Bennett JS, Thompson EA, Kriz P, Jolley KA, Maiden MC. A common gene pool for the Neisseria FetA antigen. Int J Med Microbiol. 2009;299(2):133–9.PubMedGoogle Scholar
  7. Bennett JS, et al. Independent evolution of the core and accessory gene sets in the genus Neisseria: insights gained from the genome of Neisseria lactamica isolate 020-06. BMC Genomics. 2010;11:652.PubMedPubMedCentralGoogle Scholar
  8. Bentley SD, et al. Meningococcal genetic variation mechanisms viewed through comparative analysis of serogroup C strain FAM18. PLoS Genet. 2007;3(2):e23.PubMedPubMedCentralGoogle Scholar
  9. Bilen M, et al. The contribution of culturomics to the repertoire of isolated human bacterial and archaeal species. Microbiome. 2018;6(1):94.PubMedPubMedCentralGoogle Scholar
  10. Bille E, et al. A chromosomally integrated bacteriophage in invasive meningococci. J Exp Med. 2005;201(12):1905–13.PubMedPubMedCentralGoogle Scholar
  11. Bille E, et al. Association of a bacteriophage with meningococcal disease in young adults. PLoS One. 2008;3(12):e3885.PubMedPubMedCentralGoogle Scholar
  12. Black WC, Baer CF, Antolin MF, DuTeau NM. Population genomics: genome-wide sampling of insect populations. Annu Rev Entomol. 2001;46:441–69.Google Scholar
  13. Bratcher HB, Bennett JS, Maiden MCJ. Evolutionary and genomic insights into meningococcal biology. Future Microbiol. 2012;7(7):873–85.PubMedPubMedCentralGoogle Scholar
  14. Bratcher HB, Corton C, Jolley KA, Parkhill J, Maiden MC. A gene-by-gene population genomics platform: de novo assembly, annotation and genealogical analysis of 108 representative Neisseria meningitidis genomes. BMC Genomics. 2014;15:1138.PubMedPubMedCentralGoogle Scholar
  15. Bratcher HB, et al. Establishment of the European meningococcal strain collection genome library (EMSC-GL) for the 2011 to 2012 epidemiological year. Euro Surveill. 2018;23(20).Google Scholar
  16. Buisine N, Tang CM, Chalmers R. Transposon-like Correia elements: structure, distribution and genetic exchange between pathogenic Neisseria sp. FEBS Lett. 2002;522(1–3):52–8.PubMedGoogle Scholar
  17. Callaghan MJ, et al. Opa protein repertoires of disease-causing and carried meningococci. J Clin Microbiol. 2008;46(9):3033–41.PubMedPubMedCentralGoogle Scholar
  18. Caugant DA, Maiden MC. Meningococcal carriage and disease – population biology and evolution. Vaccine. 2009;27(Suppl 2):B64–70.PubMedPubMedCentralGoogle Scholar
  19. Caugant DA, Levin BR, Selander RK. Distribution of multilocus genotypes of Escherichia coli within and between host families. J Hyg (Lond). 1984;92(3):377–84.Google Scholar
  20. Caugant DA, et al. Genetic diversity in relation to serotype in Escherichia coli. Infect Immun. 1985;49(2):407–13.PubMedPubMedCentralGoogle Scholar
  21. Caugant DA, et al. Multilocus genotypes determined by enzyme electrophoresis of Neisseria meningitidis isolated from patients with systemic disease and from healthy carriers. J Gen Microbiol. 1986;132:641–52.PubMedGoogle Scholar
  22. Caugant DA, et al. Genetic relationships and clonal population structure of serotype 2 strains of Neisseria meningitidis. Infect Immun. 1987a;55(6):1503–13.PubMedPubMedCentralGoogle Scholar
  23. Caugant DA, et al. Intercontinental spread of Neisseria meningitidis clones of the ET-5 complex. Antonie Van Leeuwenhoek. 1987b;53(6):389–94.PubMedGoogle Scholar
  24. Caugant DA, Kristiansen BE, Frøholm LO, Bovre K, Selander RK. Clonal diversity of Neisseria meningitidis from a population of asymptomatic carriers. Infect Immun. 1988;56(8):2060–8.PubMedPubMedCentralGoogle Scholar
  25. Chain PS, et al. Genome project standards in a new era of sequencing. Science. 2009;326(5950):236–7.PubMedGoogle Scholar
  26. Climent Y, et al. Clonal distribution of disease-associated and healthy carrier isolates of Neisseria meningitidis between 1983 and 2005 in Cuba. J Clin Microbiol. 2010;48(3):802–10.PubMedGoogle Scholar
  27. Correia FF, Inouye S, Inouye M. A 26-base-pair repetitive sequence specific for Neisseria gonorrhoeae and Neisseria meningitidis genomic DNA. J Bacteriol. 1986;167(3):1009–15.PubMedPubMedCentralGoogle Scholar
  28. Davidsen T, et al. Biased distribution of DNA uptake sequences towards genome maintenance genes. Nucleic Acids Res. 2004;32(3):1050–8.PubMedPubMedCentralGoogle Scholar
  29. Diallo K, et al. Hierarchical genomic analysis of carried and invasive serogroup A Neisseria meningitidis during the 2011 epidemic in Chad. BMC Genomics. 2017;18(1):398.PubMedPubMedCentralGoogle Scholar
  30. Diancourt L, Passet V, Verhoef J, Grimont PAD, Brisse S. Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. J Clin Microbiol. 2005;43(8):4178–82.PubMedPubMedCentralGoogle Scholar
  31. Didelot X, Falush D. Inference of bacterial microevolution using multilocus sequence data. Genetics. 2007;175(3):1251–66.PubMedPubMedCentralGoogle Scholar
  32. Didelot X, Maiden MC. Impact of recombination on bacterial evolution. Trends Microbiol. 2010;18(7):315–22.PubMedPubMedCentralGoogle Scholar
  33. Didelot X, Wilson DJ. ClonalFrameML: efficient inference of recombination in whole bacterial genomes. PLoS Comput Biol. 2015;11(2):e1004041.PubMedPubMedCentralGoogle Scholar
  34. Elberse KE, et al. Pneumococcal population in the era of vaccination: changes in composition and the relation to clinical outcomes. Future Microbiol. 2016;11(1):31–41.PubMedGoogle Scholar
  35. Enright MC, Spratt BG. A multilocus sequence typing scheme for Streptococcus pneumoniae: identification of clones associated with serious invasive disease. Microbiology. 1998;144(11):3049–60.PubMedGoogle Scholar
  36. Enright MC, Day NPJ, Davies CE, Peacock SJ, Spratt BG. Multilocus sequence typing for the characterization of methicillin-resistant (MRSA) and methicillin-susceptible (MSSA) clones of Staphylococcus aureus. J Clin Microbiol. 2000;38:1008–15.PubMedPubMedCentralGoogle Scholar
  37. Feil E, Zhou J, Maynard Smith J, Spratt BG. A comparison of the nucleotide sequences of the adk and recA genes of pathogenic and commensal Neisseria species: evidence for extensive interspecies recombination within adk. J Mol Evol. 1996;43(6):631–40.PubMedGoogle Scholar
  38. Fleischmann RD, et al. Whole-genome random sequencing and assembly of Haemophilus influenzae RD. Science. 1995;269:496–512.PubMedGoogle Scholar
  39. Frye SA, Nilsen M, Tonjum T, Ambur H. Dialects of the DNA uptake sequence in Neisseriaceae. PLoS Genet. 2013;9(4):e1003458.PubMedPubMedCentralGoogle Scholar
  40. Gardy JL, Loman NJ. Towards a genomics-informed, real-time, global pathogen surveillance system. Nat Rev Genet. 2018;19:9–20.PubMedGoogle Scholar
  41. Goldberg B, Sichtig H, Geyer C, Ledeboer N, Weinstock GM. Making the leap from research laboratory to clinic: challenges and opportunities for next-generation sequencing in infectious disease diagnostics. MBio. 2015;6(6):e01888.PubMedPubMedCentralGoogle Scholar
  42. Goodman SD, Scocca JJ. Identification and arrangement of the DNA sequence recognized in specific transformation of Neisseria gonorrhoeae. Proc Natl Acad Sci U S A. 1988;85:6982–6.PubMedPubMedCentralGoogle Scholar
  43. Gulcher J, Stefansson K. Population genomics: laying the groundwork for genetic disease modeling and targeting. Clin Chem Lab Med. 1998;36(8):523–7.PubMedGoogle Scholar
  44. Hall LM, Whiley RA, Duke B, George RC, Efstratiou A. Genetic relatedness within and between serotypes of Streptococcus pneumoniae from the United Kingdom: analysis of multilocus enzyme electrophoresis, pulsed-field gel electrophoresis, and antimicrobial resistance patterns. J Clin Microbiol. 1996;34(4):853–9.PubMedPubMedCentralGoogle Scholar
  45. Hanage WP, et al. Using multilocus sequence data to define the pneumococcus. J Bacteriol. 2005;187(17):6223–30.PubMedPubMedCentralGoogle Scholar
  46. Harris H. Enzyme variants in human-populations. Johns Hopkins Med J. 1976;138(6):245–52.PubMedGoogle Scholar
  47. Hill DMC, et al. Genomic epidemiology of age-associated meningococcal lineages in national surveillance: an observational cohort study. Lancet Infect Dis. 2015;15(12):1420–8.PubMedPubMedCentralGoogle Scholar
  48. Hood DW, et al. Use of the complete genome sequence information of Haemophilus influenzae strain Rd to investigate lipopolysaccharide biosynthesis. Mol Microbiol. 1996;22(5):951–65.PubMedGoogle Scholar
  49. Jolley KA, Maiden MC. BIGSdb: scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics. 2010;11(1):595.PubMedPubMedCentralGoogle Scholar
  50. Jolley KA, Maiden MC. Using MLST to study bacterial variation: prospects in the genomic era. Future Microbiol. 2014;9:623–30.PubMedGoogle Scholar
  51. Jolley KA, Wilson DJ, Kriz P, McVean G, Maiden MC. The influence of mutation, recombination, population history, and selection on patterns of genetic diversity in Neisseria meningitidis. Mol Biol Evol. 2005;22(3):562–9.PubMedGoogle Scholar
  52. Jolley KA, et al. Resolution of a meningococcal disease outbreak from whole genome sequence data with rapid web-based analysis methods. J Clin Microbiol. 2012;50(9):3046–53.PubMedPubMedCentralGoogle Scholar
  53. Junemann S, et al. Updating benchtop sequencing performance comparison. Nat Biotechnol. 2013;31(4):294–6.PubMedGoogle Scholar
  54. Kretz CB, et al. Whole-genome characterization of epidemic Neisseria meningitidis serogroup C and resurgence of serogroup W, Niger, 2015. Emerg Infect Dis. 2016;22(10):1762–8.PubMedPubMedCentralGoogle Scholar
  55. Lamelas A, et al. Emergence of a new epidemic Neisseria meningitidis serogroup A clone in the African meningitis belt: high-resolution picture of genomic changes that mediate immune evasion. MBio. 2014;5(5):e01974–14.PubMedPubMedCentralGoogle Scholar
  56. Lavezzo E, et al. Genomic comparative analysis and gene function prediction in infectious diseases: application to the investigation of a meningitis outbreak. BMC Infect Dis. 2013;13:554.PubMedPubMedCentralGoogle Scholar
  57. Lewontin RC, Hubby JL. A molecular approach to study of genic heterozygosity in natural populations. 2. Amount of variation and degree of heterozygosity in natural populations of Drosophila pseudoobscura. Genetics. 1966;54(2):595–609.PubMedPubMedCentralGoogle Scholar
  58. Loman NJ, et al. High-throughput bacterial genome sequencing: an embarrassment of choice, a world of opportunity. Nat Rev Microbiol. 2012;10(9):599–606.PubMedGoogle Scholar
  59. Lucidarme J, et al. Genomic resolution of an aggressive, widespread, diverse and expanding meningococcal serogroup B, C and W lineage. J Infect. 2015;71(5):544–52.PubMedPubMedCentralGoogle Scholar
  60. Luikart G, England PR, Tallmon D, Jordan S, Taberlet P. The power and promise of population genomics: from genotyping to genome typing. Nat Rev Genet. 2003;4(12):981–94.Google Scholar
  61. Maiden MC. Multilocus sequence typing of bacteria. Annu Rev Microbiol. 2006;60:561–88.PubMedGoogle Scholar
  62. Maiden MC. Population genomics: diversity and virulence in the Neisseria. Curr Opin Microbiol. 2008;11(5):467–71.PubMedPubMedCentralGoogle Scholar
  63. Maiden MC. The impact of protein-conjugate polysaccharide vaccines: an endgame for meningitis? Philos Trans R Soc Lond Ser B Biol Sci. 2013;368(1623):20120147.Google Scholar
  64. Maiden MCJ, et al. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A. 1998;95(6):3140–5.PubMedPubMedCentralGoogle Scholar
  65. Maiden MC, et al. MLST revisited: the gene-by-gene approach to bacterial genomics. Nat Rev Microbiol. 2013;11(10):728–36.PubMedPubMedCentralGoogle Scholar
  66. Marri PR, et al. Genome sequencing reveals widespread virulence gene exchange among human Neisseria species. PLoS One. 2010;5(7):e11835.PubMedPubMedCentralGoogle Scholar
  67. Meats E, et al. Characterization of encapsulated and noncapsulated Haemophilus influenzae and determination of phylogenetic relationships by multilocus sequence typing. J Clin Microbiol. 2003;41(4):1623–36.PubMedPubMedCentralGoogle Scholar
  68. Millar EV, et al. Genomic characterization of USA300 methicillin-resistant Staphylococcus aureus (MRSA) to evaluate intraclass transmission and recurrence of skin and soft tissue infection (SSTI) among high-risk military trainees. Clin Infect Dis. 2017;65(3):461–8.PubMedPubMedCentralGoogle Scholar
  69. Moxon ER, Rainey PB, Nowak MA, Lenski RE. Adaptive evolution of highly mutable loci in pathogenic bacteria. Curr Biol. 1994;4(1):24–33.PubMedGoogle Scholar
  70. Mulhall RM, et al. Resolution of a protracted serogroup B meningococcal outbreak with whole genome sequencing shows inter species genetic transfer. J Clin Microbiol. 2016;54(12):2891–9.PubMedPubMedCentralGoogle Scholar
  71. Musser JM, Kapur V. Clonal analysis of methicillin-resistant Staphylococcus aureus strains from intercontinental sources – Association of the Mec Gene with divergent phylogenetic lineages implies dissemination by horizontal transfer and recombination. J Clin Microbiol. 1992;30(8):2058–63.PubMedPubMedCentralGoogle Scholar
  72. Musser JM, Barenkamp SJ, Granoff DM, Selander RK. Genetic relationships of serologically nontypable and serotype b strains of Haemophilus influenzae. Infect Immun. 1986a;52(1):183–91.PubMedPubMedCentralGoogle Scholar
  73. Musser JM, Hewlett EL, Peppler MS, Selander RK. Genetic diversity and relationships in populations of Bordetella spp. J Bacteriol. 1986b;166(1):230–7.PubMedPubMedCentralGoogle Scholar
  74. Musser JM, Bemis DA, Ishikawa H, Selander RK. Clonal diversity and host distribution in Bordetella bronchiseptica. J Bacteriol. 1987;169(6):2793–803.PubMedPubMedCentralGoogle Scholar
  75. Musser JM, Kroll JS, Moxon ER, Selander RK. Evolutionary genetics of the encapsulated strains of Haemophilus influenzae. Proc Natl Acad Sci U S A. 1988;85(20):7758–62.PubMedPubMedCentralGoogle Scholar
  76. Mustapha MM, et al. Genomic epidemiology of hypervirulent serogroup W, ST-11 Neisseria meningitidis. EBioMedicine. 2015;2(10):1447–55.PubMedPubMedCentralGoogle Scholar
  77. Nicolas P, et al. Clonal expansion of sequence type (ST-)5 and emergence of ST-7 in serogroup A meningococci, Africa. Emerg Infect Dis. 2001;7(5):849–54.PubMedPubMedCentralGoogle Scholar
  78. Oldfield NJ, et al. Genomic analysis of serogroup Y Neisseria meningitidis isolates reveals extensive similarities between carriage-associated and disease-associated organisms. J Infect Dis. 2016;213(11):1777–85.PubMedPubMedCentralGoogle Scholar
  79. Olyhoek T, Crowe BA, Achtman M. Clonal population structure of Neisseria meningitidis serogroup A isolated from epidemics and pandemics between 1915 and 1983. Rev Infect Dis. 1987;9:665–82.PubMedGoogle Scholar
  80. Parkhill J, et al. Complete DNA sequence of a serogroup A strain of Neisseria meningitidis Z2491. Nature. 2000;404(6777):502–6.PubMedGoogle Scholar
  81. Prober JM, et al. A system for rapid DNA sequencing with fluorescent chain-terminating dideoxynucleotides. Science. 1987;238(4825):336–41.PubMedPubMedCentralGoogle Scholar
  82. Quick J, et al. Real-time, portable genome sequencing for Ebola surveillance. Nature. 2016;530(7589):228–32.PubMedPubMedCentralGoogle Scholar
  83. Retchless AC, et al. The establishment and diversification of epidemic-associated serogroup W Meningococcus in the African Meningitis Belt, 1994 to 2012. mSphere. 2016;1(6).Google Scholar
  84. Robinson DA, Falush D, Feil EJ. Bacterial population genetics in infectious disease. Hoboken: Wiley; 2010. p. 420.Google Scholar
  85. Rodrigues CMC, Maiden MCJ. A world without bacterial meningitis: how genomic epidemiology can inform vaccination strategy. F1000Res. 2018;7:401.PubMedPubMedCentralGoogle Scholar
  86. Salvatore P, et al. Phenotypes of a naturally defective recB allele in Neisseria meningitidis clinical isolates. Infect Immun. 2002;70(8):4185–95.PubMedPubMedCentralGoogle Scholar
  87. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977;74(12):5463–7.PubMedPubMedCentralGoogle Scholar
  88. Seib KL, et al. Specificity of the ModA11, ModA12 and ModD1 epigenetic regulator N(6)-adenine DNA methyltransferases of Neisseria meningitidis. Nucleic Acids Res. 2015;43:4150–62.PubMedPubMedCentralGoogle Scholar
  89. Selander RK, et al. Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. Appl Environ Microbiol. 1986;51:837–84.Google Scholar
  90. Selander RK, et al. Evolutionary genetic relationships of clones of Salmonella serovars that cause human typhoid and other enteric fevers. Infect Immun. 1990;58(7):2262–75.PubMedPubMedCentralGoogle Scholar
  91. Spratt BG, et al. Recruitment of a penicillin-binding protein gene from Neisseria flavescens during the emergence of penicillin resistance in Neisseria meningitidis. Proc Natl Acad Sci U S A. 1989;86:8988–92.PubMedPubMedCentralGoogle Scholar
  92. Tan A, et al. Distribution of the type III DNA methyltransferases modA, modB and modD among Neisseria meningitidis genotypes: implications for gene regulation and virulence. Sci Rep. 2016;6:21015.PubMedPubMedCentralGoogle Scholar
  93. Tettelin H, et al. Complete genome sequence of Neisseria meningitidis serogroup B strain MC58. Science. 2000;287(5459):1809–15.PubMedGoogle Scholar
  94. Toros B, et al. Genome-based characterization of emergent invasive Neisseria meningitidis serogroup Y isolates in Sweden from 1995 to 2012. J Clin Microbiol. 2015;53(7):2154–62.PubMedPubMedCentralGoogle Scholar
  95. Treangen TJ, Ambur OH, Tonjum T, Rocha EP. The impact of the neisserial DNA uptake sequences on genome evolution and stability. Genome Biol. 2008;9(3):R60.PubMedPubMedCentralGoogle Scholar
  96. Vos M, Didelot X. A comparison of homologous recombination rates in bacteria and archaea. ISME J. 2009;3(2):199–208.PubMedGoogle Scholar
  97. Wang JF, et al. Clonal and antigenic analysis of serogroup A Neisseria meningitidis with particular reference to epidemiological features of epidemic meningitis in China. Infect Immun. 1992;60:5267–82.PubMedPubMedCentralGoogle Scholar
  98. Watkins ER, Maiden MCJ. Metabolic shift in the emergence of hyperinvasive pandemic meningococcal lineages. Sci Rep. 2017;7:41126.PubMedPubMedCentralGoogle Scholar
  99. (WHO/IST) IcST-WA. Meningitis weekly reports. In: WHO, editor. Epidemiological information-meningitis. Ouagadougou: WHO-Multi-Disease Surveillance Centre, Regional Meningitis Surveillance.
  100. Yahara K, et al. The landscape of realized homologous recombination in pathogenic bacteria. Mol Biol Evol. 2016;33(2):456–71.PubMedGoogle Scholar
  101. Yazdankhah SP, et al. Distribution of serogroups and genotypes among disease-associated and carried isolates of Neisseria meningitidis from the Czech Republic, Greece, and Norway. J Clin Microbiol. 2004;42(11):5146–53.PubMedPubMedCentralGoogle Scholar
  102. Young KT, Davis LM, Dirita VJ. Campylobacter jejuni: molecular biology and pathogenesis. Nat Rev Microbiol. 2007;5(9):665–79.PubMedGoogle Scholar
  103. Zhou J, Bowler LD, Spratt BG. Interspecies recombination, and phylogenetic distortions, within the glutamine synthetase and shikimate dehydrogenase genes of Neisseria meningitidis and commensal Neisseria species. Mol Microbiol. 1997;23(4):799–812.PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ZoologyUniversity of OxfordOxfordUK
  2. 2.Centre pour les Vaccins en DéveloppementBamakoMali

Personalised recommendations